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JOB PERFORVANCE REPORT

State of: |daho Nane: Status and Analysis of
Sal noni d Fi sheri es
Project No.: F-73-R-12 Title: Kokanee Popul ati on Dynam cs
Subproject No.: 11 Job 1: Density-Dependent G owth and
Productivity of the Rearinqg
Study No.: | Lake or Reservoir
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ABSTRACT

W used long-term (up to 12 years) nonitoring data on ni ne kokanee sal non
popul ati ons to describe density-dependent responses in growth. V& found obvious
densi ty- dependence in ol der age classes (age 2+ and 3+) but not in yearling fish.
Gowh in all age classes was strongly influenced by lake or reservoir
productivity. The response in growh was continuous and did not indicate a
threshold that could be interpreted as a carrying capacity. Intraspecific
conpetition probably increases with age and probably is not inportant among age-
0+ and 1+ fish, or between those age groups and ol der fish. The form of the
densi ty- dependent response we described for kokanee sal mon was different than
that often described for sockeye sal non. Mechani sns of popul ation regul ation
for the two forns probably are different as well. Qur enpirical nodels of growh
shoul d be useful to managers predicting density-related changes in fisheries of
varied productivity. Consistent, long-term data anmong a nunber of popul ati ons
proved to be a powerful nethod for understandi ng popul ati on responses. This
approach shoul d be adopt ed whenever possi bl e.

Aut hor s:

Bruce E. Ri enman
Princi pal Fishery Research Biol ogi st

Debby Myers
Fi shery Techni ci an
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INTRODUCTION

Kokanee sal nobn, a non-anadronous form of Oncor hynchus nerka, are an
extrenely inportant resource in ldaho. Popul ati ons have been established, or
are supported, through hatchery supplenentation in nost of the oligotrophic |akes
and reservoirs of the State. Populations directly support many fisheries but
al so provide the key forage for trophy salnmonid fisheries (Wdoski and Bennett
1981). Toget her these fisheries represent sone of the nost inportant in the
State (Reid 1989).

Kokanee sal mon typically rear in | akes or reservoirs, foraging on nacro-
zoopl ankt on. Popul ati ons often exhibit substantial variation in growh of
individuals that can be strongly density-dependent, simlar to that reported
for juvenile sockeye sal non, the anadronous formof Q nerka (Goodl ad et al
1974; Johnson 1965; Rogers 1980; Burgner 1964; Hartnman and Burgner 1972).
Conpensation in growh of sockeye salnon is hypothesized to be the result of
expl oitive conpetition for limted food (Goodl ad et al. 1974; Kyle et al. 1988;
Hartman and Burgner 1972; Johnson 1964, 1965; Brocksen et al. 1970). Because
productivity of the rearing environnent should influence abundance of food,
productivity should al so nediate the density-dependent response in growh anong
sockeye sal mon popul ati ons (Johnson 1964; Brocksen et al. 1970; Burgner 1987),
and presumably anmong kokanee popul ations.

The nature of growth conpensation in kokanee sal mon has not been descri bed.
Johnson (1964, 1965) and others (Goodlad et al. 1974; R cker 1937; MDonal d and
Hunme 1984) provide data that suggest little density-dependent change in growh
of some sockeye popul ations until a threshold density is reached. Qur own early
observations of |daho kokanee sal non suggested little density-dependent change
in growmh at noderate densities, but strong changes in newy established
popul ations or those fluctuating at |ow densities (R eman and Bow er 1980). Wth
that information, R eman and Bow er (1980) hypothesized a conpl ex response in
densi ty-dependent growth of kokanee salnon with a threshold (Figure 1) where
declines in growh accel erated at high densities.

Because tradeoffs in size and nunber of kokanee nay directly influence
the quality of a fishery or forage base, predictions of density-dependent growh
shoul d directly influence nmanagenent goals for popul ation size. For exanple,
nmanagenent goals for Pend Ceille Lake in Idaho were based on the threshold
nodel . Managenent assumed that densities could be pushed to the upper threshol d
with little cost in size of fish and the benefit of increased catch rates.

Because | akes and reservoirs differ substantially in productivity, density-
dependent responses in growh and, hence, fishery nmanagement goals should al so
differ anmong waters. (bservations or nmodels for one |lake nmay not correctly guide
nmanagenent in others. Unlike for sockeye, there is no informati on denonstrating
the influence of |ake productivity on growh or density-dependent responses of
kokanee. Even the hypothetical response for Pend Oeille was an extrapol ation
from sockeye, and has not been quantified.
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GROWTH
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Figure 1. Theoretical densitiy—dependent response in growth of kokanee salmon
(after Rieman and Bowler 1980)



Bi ol ogi sts have worked wi th kokanee populations in Idaho for nearly 50
years. In the last 20 years, the technology for sanpling popul ations inproved
with the availability of sonar and mdwater traws. Traw sanpling for estinates
of popul ation structure and size has been particularly inportant. Trawing for
all ages of kokanee was first developed in Gegon in the early 1970s and adopt ed
in ldaho in 1977. Initial work in Idaho was on Pend Oeille Lake, but sanpling
expanded to other waters as needs arose. Mst work was conducted to address
speci fic managerent probl ens with individual popul ations. However, because the
data were collected by a consistent nmethod, and in nost cases for at |east two
years, a sizeable body of information is avail able.

In this report we use information fromthe sanpling of several kokanee
sal mon popul ations to describe relationships of fish growth with density and
productivity of the rearing environnent. Information fromthis job is then used
¥4tn that in Job 2 of this report to develop predictive nodels of kokanee

i sheries.

OBJECTI VES

bj ectives of this job were to:

1. Summarize avail abl e data on kokanee growth and density and indices of |ake
productivity for | akes and reservoirs in Idaho and O egon.

2. Describe relationshi ps between kokanee growh (length-at-age) and fish
density and |ake productivity. Develop enpirical nodels that wll allow

managers to predict changes in length-at-age, or to identify optinmm
densities in individual populations.

METHODS

Productivity

W used avail able data from several sources to describe six indices of
productivity for each lake or reservoir. In nost cases, the observations we used
were either collected during years of work on the kokanee popul ations or were
estimated fromother data collected during that time. Secchi data for Anderson
Ranch Reservoir were available only for a period nine years before the kokanee
sanpl i ng. Whenever several years of data were available, we used a nean for all
years. W used Secchi transparency as a nmean of weekly or biweekly sanples for
the period fromearly May through Septenber. W used estimates of chlorophyl
"a" for the sane period as Secchi transparency. Chlorophyll was estinated using
the spectrophoneter nmethod (S ack et al. 1973) from sanples pooled either in the
upper 10 mof the water colum or fromthe estinmated photic zone. W& used the
maxi num estinates of specific conductance available for each |ake. Conductance
was routinely sanpled with a tenperature conpensating bridge. W used tota
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phosphorous as P. Mst phosphorous data was from MIlligan et al. (1983), but
we devel oped our own data for Pend Creille and Priest Lakes. Qur estinates of
phosphorous in Priest and Pend Ceille were from pool ed sanples taken in the
upper 10 m during spring overturn and were analyzed by the EPA Seattle
Laboratory. W estinmated a norphoedaphi c i ndex (Ryder 1965) for each water by
di vidi ng conductance by nmean depth in neters. W estinmated m ssing observations
by sinple regression of the nissing paraneter on one or nore of the others for
all avail able observations. Were nore than one significant (p = 0.05)
regression was available, we used a nmean of predicted values. Qur last index
was a conposite of the five preceding paraneters. W standardi zed the five
paraneters, dividing each by its highest observation anong all |akes. For the
conposite we summed the standardi zed observations across all parameters for each
| ake.

Gowth, Density, and Productivity

Kokanee were sanpled and densities estimated for eight |daho popul ations
with a mdwater traw. The trawl system was based on that described by Houser
and Dunn (1967), differing primarily in traw dinensions. The |Idaho traw
measured 3 mx 3 mat the nouth and was 13.7 mlong. Netting in the traw body
graduated in four panels from 32 nmm (stretch nmeasure) to 13 mm Mesh in the cod
end neasured 6 mm The net was fished froma double warp with hydrofoils and
suppressors to spread the mouth vertically and two doors to spread horizontally.
The trawl was towed with an 8.5 m boat powered by a 150 hp di esel engine.

The trawl was fished at 1.3 to 1.5 mis through the strata of the water
col um where kokanee were distributed. Depth of the trawl was estinated by a
wire angle-depth relationship verified wth an echo sounder in a second boat or
with a time-depth recorder.

Al trawing was done at night during the dark phase (new) noon from July
to Septenber. Trawl sanples were nmade in a stepped-oblique fashion. The traw
was dropped to the bottom of the predeternmined sanpling strata, fished for three
to five mnutes, raising the bottomof the trawl to a new depth approxi mati ng
the top of the previous depth, and then repeating the procedure until the full
distribution of kokanee had been fished. Fishing time was constantw thin |akes,
but nodified anong | akes depending on relative nunbers in the sanple. The
sanpling strata were selected to conpl etely enconpass the vertical distribution
of kokanee identified by echo sounding (200 khz sounder). Interpretation of
echograns was sinple for nost popul ati ons where kokanee were the domnant or only
limetic fish. Young-of-the-year yellow perch were abundant in Anderson Ranch
Reservoir, and prelimnary trawing of individual strata was necessary to
i nterpret the echograns.

Density of kokanee for each haul was estimated by dividing the catch by
the theoretical volunme sanpled. W assunmed 100% efficiency with no net
avoi dance, and estinated vol une sanpl ed as the product of boat speed x nouth area
x el apsed tinme of traw .
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Initial sanpling of each popul ation was random on snaller waters (less than
5,000 hectares) or stratified (by surface area) random on |arger waters or
systens that had nore than one distinct basin. Atotal of five to thirty traws,
with a mininumof three trawls per areal strata, were nmade in each water.
Traw ing locations within a basin or areal strata were selected randomy in the
first year of sanpling. The original |ocations were repeated in subsequent
years. Total population size was estinmated using normal expansions for
stratified or sinple sanpling designs (Scheaffer et al. 1986), based on the |ake
or reservoir volunes strata-sanpled. Density (fish/hectare) was cal cul ated by
dividing the total estimate by the area with depth equal to, or greater than,
the m ni rum dept h where kokanee were observed.

QG owt h of kokanee was described by length-at-age. In all traw sanples,
kokanee | arger than young-of -the-year were neasured (total length). W used
conposite |ength-frequencies from each population to identify individual age
classes and used the node for each as length at time of sanpling. The
distributions of age-1+ and age-2+ fish were usually distinct and the nodes
easily identified. D stributions of age-3+ fish often overlapped w th ol der
kokanee. In sone sanples, aging information was available to partition age
cl asses anong i ndividual |ength classes and was used to interpret the | ength-
frequenci es whenever possible. When age- 3+ fish could not be clearly
di sti ngui shed from ot her cohorts, the observation was elini nated.

Because sanpling was conducted fromJuly to late Septenber and because
kokanee may grow substantially during that period, we standardized all |engths
at sanpling to length in late Septenber. To develop the correction, we used data
for two popul ati ons where sanples of each age class were avail able from June
through Cctober on four separate occasions. W divided the length in late
Septenber or early ctober (determned by sanple nearest the end of Septenber)
by the length in previous nonths. The correction for each age class in each
nmonth was then nultiplied by the sanple length to standardi ze the estimate.

To expand our data base to nine popul ations, we incorporated infornation
col lected by the Oregon Departnent of Fish and Wildlife (Lewis 1974; Lindsay and
Lewis 1978) for Qdell Lake, Qegon. The Qegon data were collected with a traw
systemidentical to ours (our boat and traw were built with specifications from
the Oregon boat and trawl ). The only difference in sanpling in Oegon was that
oblique trawl hauls were not used. Rather, trawls were made in individua
strata, then processed and the procedure repeated in a new strata until the ful
vertical distribution was sanpl ed.

VW described the rel ationshi ps between |ength-at-age and the density of
kokanee sal mon and water productivity with regression anal ysis. V¢ anal yzed each
age class separately, but omtted anal ysis of age-0+ fish because of extrene
variability in length at sanpling. Age-Ot |engths appeared to be strongly
i nfl uenced by emergence or stocking time and stocking size, which we could not
accurately describe in all populations. Density was represented either as
density of the age class in question or total density of all ages. V& performed
our analyses using untransformed data, |og and squared transformations, and
appropriate interaction terns. W report only our "best-fit" results.
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RESULTS

Productivity

Qur indices of productivity (Table 1) indicate that waters we studied ranged
formultra-oligotrophic (Payette Lake) to the upper range of oligotrophy. V¢ found
significant correlations between several of the indices. The strongest
correl ations were anong sunmer nean Secchi transparency, chlorophyll "a’, M,
and total phosphorous (Table 2). Conductivity was not strongly correlated with
the other indices. W therefore used sinple regressions among chlorophyll "a’,
total phosphorous, MEl, and Secchi transparency (one independent variable at a
tine) to predict mssing observations. Wen two regressi ons were possible, we
used the nmean of the predicted val ues.

Growmh, Density, and Productivity

Corrections for sanple length to late Septenber length ranged from 1.46 to
1. 07, depending on nonth of sanple and age (Table 3). W generated the nost
observations conplete for corrected |length-at-age and density for age 1+ kokanee
(47) and the fewest for age-3+ fish (29) (Table 4). Estimated densities ranged
about three orders of nagnitude anong all observations. For popul ations where
i ndi vidual year classes were sanpled in successive age classes, age-3+ density
aver aged 60% of age-2+ density and age-2+ density averaged 90%of that at age 1+.

Age 1+

Length-at-age 1+ anong all |akes was nost strongly correlated with Secchi
transparency and chlorophyll a (Table 5, Figure 2). Length-at-age was
positively, although weakly, correlated with density. To renove the influence of
productivity we sorted the observations by Secchi transparency. V& found slightly
negative relationships with density anong the popul ations in the waters of highest
and intermedi ate productivity (Figure 3). Regression nodels using chlorophyll "a"
or Secchi transparency and the log of density at age 1+ or total density (all ages)
expl ained 61% to 63% of the variation in length-at-age (Table 6). Variables
representing fish density were significant only when used as total density. Mdels
incorporating density and productivity show the latter to have the strongest
i nfluence on length (Figure 3).

Age 2+

W found weak but significant correlations of length-at-age 2+ with |og
density and several indices of productivity (Table 5). Wen we sorted the data
by relative productivity, a negative relationship between length and | og density
was evident (Figure 4). The best regression nodels incorporated | og density and
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Table 1. Indices of productivity for kokanee salmon lakes and reservoirs in Idaho and Oregon.
Data are from Idaho Fish and Game sampling related to this project unless noted

in footnote.

RIoraphy T Tota e Trassharency Cumpgs ane”

Body of water (ug/T Cug/T ¢ @ 25°0) MEI Index
IDAHO

Anderson Ranch 4 .2h 14F 3. 4e 60f 2. 2.41
Coeur d'Alene Lake 4.0 45f'9 5.0 80 3. 2.87
pworshak Reservoir 4.4f 21F 4.5b 30f 0. 2.18
Payette Lake <1l.o0f 5.5h 9.0 20 0. 0.78
Pend Oreille Lake 2.0 11 6.5 180 1. 1.84
Priest Lake 1.5° 4 B.0 50 1. 1.03
Spirit Lake 5.3 18 3.9 240 22. 4.13
Upper Priest Lake 2.9 6 6.0 100 8. 1.98
OREGON

odell Lake 3.0 14h 7.0 33 0. 1.52

asoltero and Hall 1984

bMauser et al. 1989

cBellatty 1989
dRieman 1979

fMate 1977 Milligan et al. 1983
dower values also reported, heavy metal contamination may reduce phosphorus availability

hPredicted from regression with secchi, chlorophyll, and/or phosphorus

TABT1.JB1



Table 2. Pearson correlation matrix for six indices of productivity for kokanee
sal non | akes and reservoirs in Idaho and Oregon. Significant
(p = 0.05) correlations are noted by *, sanple sizes are shown in
par ent heses.

Chlor. 'a' Total P Secchi Conduct. MET

Chl or ophyl | ' a' 1. 000
(8)
Tot al Phosphor us 0. 580* 1. 000
(6) (9)
Secchi Transparency -0. 960* -0. 446 1. 000
(7) (8) (10)
Conduct ance 0. 376 -0. 205 0. 044 1. 000
(8) (9) (10) (10)
Mor phoedaphi ¢ | ndex 0. 656* 0. 051 -0. 408 0.528 1. 000
(8) (9) (10) (11) (11)
TABT2. JB1



Tabl e 3.

Mean corrections (multiplication factors) for |ength-at-age sanpl ed
prior to late Septenber. Corrections were based on nonthly sanpling
over three years in Pend Oeille Lake (Bow er 1980a) and one year in
Coeur d' Al ene Lake (Bow er 1980b).

Mont h Age 1+ Age 2+ Age 3+
June 1.46 1.14 1.14
July 1.20 1.09 1.11
August 1.11 1.04 1. 07
TABT2. JB1
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Table 4. Densities (fish/hectare) and Septenber |ength-at-age® for kokanee
salnon in nine | akes and reservoirs in Idaho and O egon.

Year of Lenqt h-at - Age Density-at-Age Total®
WAt er observation 1+ 2+ 3+ 1+ 2+ 3+ density
| DAHO
Ander son Ranch 1986 210 267 - 10 11 4 218
Ander son Ranch 1987 211 234 - 5 m 8 260
Ander son Ranch 1989 - - 320 5 848
Couer d' Al ene 1978 163 205 250 307 129 121 686
Coeur d' Al ene 1979 158 195 245 237 186 47 625
Coeur d Al ene 1980 158 185 225 174 202 110 679
Couer d' Al ene 1983 144 182 220 198 233 84 672
Coeur d' Al ene 1984 150 182 - 121 196 83 473
Coeur d Al ene 1985 161 192 225 89 193 262 972
Coeur d Al ene 1986 162 198 - 268 190 75 758
Coeur d Al ene 1987 161 - - 247 303 92 1355
Coeur d' Al ene 1988 - - - 317 395 63 1130
Dwor shak 1988 210 261 310 45 4 10 109
Payette 1980 90 156 240 4 36 9 105
Payette 1988 105 175 - 2 6 - 87
Payette 1989 100 - - 14 - - 96
Pend Oreille 1977 148 205 235 52 131 29 300
Pend Oeille 1978 148 195 235 31 89 57 258
Pend Oreille 1979 153 215 245 58 75 30 252
Pend Oeille 1980 148 205 255 44 42 46 207
Pend Oeille 1984 158 215 240 67 54 12 249
Pend Oeille 1985 157 221 262 46 55 16 196
Pend Oeille 1986 149 214 233 51 30 24 189
Pend Oeille 1987 142 214 252 35 37 19 266
Pend Oeille 1988 140 205 242 73 23 17 452
Priest 1978 144 213 245 15 14 7 49
Pri est 1979 172 208 - 13 2 1 21
Pri est 1980 150 - - 7 - - 8
Pri est 1983 133 - - 4 - - 50
Pri est 1984 162 - - 27 2 - 35
Pri est 1985 188 245 290 3 4 - 42
Pri est 1986 - 263 - 3 1 - 15
TABT2. JB1
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Tabl e 4. Conti nued.

Year of Lengt h- at - Age Density-at-Age Total®
Wat er observation 1+ 2+ 3+ 1+ 2+ 3+ density
Sirit 1981 194 224 260 128 143 161 922
Sirit 1982 204 240 260 364 101 84 1465
Sirit 1983 192 224 260 475 256 94 1075
Sirit 1984 198 229 250 30 280 180 496
Sirit 1985 192 224 256 360 197 129 973
Sirit 1986 192 229 245 501 188 98 816
Sirit 1987 204 229 270 311 605 170 1168
Sirit 1988 204 240 270 393 160 272 950
Upper Priest 1978 150 229 - 3 6 - 90
Upper Priest 1979 139 - - 28 - - 81
Upper Priest 1980 138 200 - 25 19 - 169
Upper Priest 1984 133 - - 6 - - 148
Upper Priest 1985 150 - - 15 - - 28
Upper Priest 1986 161 254 - 7 7 - 54
Upper Priest 1987 155 - - 21 6 - -
CREGN
Cdel | 1972 164 218 300 37 41 12 124
Qdel | 1973 185 229 310 10 21 22 105
Cdel | 1974 160 236 320 11 5 10 36

®Sanpl e length was corrected to expected | ate Septenber |ength based on
observation of nonthly growth in two | akes.
*Total density includes age O fish.

TABT2. JB1
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Tabl e 5. Pearson correlation coefficients for kokanee sal non | engt h-at -age
with density and indices of productivity in nine |akes and
reservoirs in Idaho and Gregon. Significant (p = 0.05) correl ations
of the expected sign are noted by *.

Lengt h- at -age

1+ 2+ 3+
(Sanpl e size) (47) (39) (29)
Density at age 0. 443 -0. 140 - 0. 246
Total density 0. 453 -0. 050 -0.134
Log density at age 0. 400 -0. 358* - 0. 409*
Log total density 0. 361 -0.223 - 0. 315*
Mor pho- edaphi ¢ | ndex 0. 536* 0. 274* -0.017
Total Phosphorus 0. 187 0. 359 -0.283
Chlorophyll 'a 0. 742* 0. 292* 0.189
Secchi transparency -0. 747~ -0.313* -0.099
Conductivity 0. 403* 0. 140 - 0. 322

TABT2. JB1
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Figure 3. Relationships of length—at-age 1+ for kokanee salmon with density

of the age class and Secchi transparency in nine lakes and reservoirs in Idaho

and Oregon.

‘A’ represents observations sorted by Secchi <Sm (¥); Secchi 5-7m

(*); and Secchi >7m (+). ‘B’ represents the regression model predictions of
length with Secchi held constant at three values. Note the difference in
scale of the X axis between ‘A’ and ‘B’.
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Table 6. Results for regressions of kokanee sal non | engt h-at - age
on density and indices of productivity.

P
Age Vari abl e For coefficients F Ratio for nodel R? N
1+ Const ant <0. 001 29. 25 <0.001 0.57 47
Log Density 0.261
Secchi <0. 001
Const ant <0. 001 37.90 <0.001 0.63 47
Log Total Density 0. 005
Secchi <0. 001
Const ant <0. 001 34.76 <0.001 0.61 47
Log Total Density 0.011
Chl orophyl | " a <0. 001
2+ Const ant <0. 001 30. 00 <0.001 0.63 39
Log Total Density <0. 001
Secchi <0. 001
Const ant <0. 001 27.61 <0.001 0.61 39
Log Total Density <0. 001
Secchi <0. 001
3+ Const ant <0. 001 8.18 0.002 0.39 29
Log Density <0. 001
Secchi 0. 005
Const ant <0. 000 17. 67 <0.001 0.58 29
Log Density <0. 000
Chl orophyl | " a' <0. 000
Const ant ? <0. 001 17. 66 <0.001 0.66 26
Log Density <0. 001
Secchi <0. 001
Const ant ? <0. 001 19.73 <0.001 0.63 26
Log Density <0. 001
Chl orophyl | &' <0. 001

®utliers renoved

TABT2. JB1
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Figure 4. Relationships of length—at-age 2+ for kokanee salmon with density
of the age class and Secchi transparency in nine lakes and reservoirs in Idaho
and Oregon. ‘A’ represents observations sorted by Secchi <Gm (¥); Secchi 5-7m
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ei ther Secchi transparency or chlorophyll "a" and explained up to 63% of the
variation in length (Table 6). Density and productivity were of simlar inportance
in explaining variation in |l ength-at-age 2+ (Figure 4).

Age 3+

Length-at-age 3+ was nore strongly, negatively correlated with density than were
the other age classes (Table 5). Length was poorly correlated with indices of
productivity, or the correlations were opposite in sign of what we anticipated
(i.e. length decreased rather than increased with productivity). However, when
we sorted the lakes by relative productivity, we again found evidence of density-
dependent growth (Figure 5). Three observations in the | akes of internediate
productivity were outliers. Al three observations were from Qdell Lake, O egon;
the only data not collected in our own sanpling program

.. Regressions of Ien%th on density and Secchi transparency or chlorophyll
a explained 39% to 57% of the variation in |ength. Regressions where we
elimnated the Qlell Lake observations explained up to 66% of the variation in
| ength (Table 6).

DISCUSSION

Qur results support a density-dependent response in growh of kokanee that
is strongly influenced by productivity. The influence of density on fish growth
has been wel| docunented (Boisclair and Leggett 1989), particularly in sockeye
(ie. CGoodlad et al. 1974; Johnson 1964; R cker 1937; Burgner 1964, 1987; Hartnan
and Burgner 1972; Rogers 1980; Kyle et al. 1988) and kokanee salnon (i.e. Maiolie
1988; Lindsay and Lewis 1978; Fraley et al. 1986). The response is comonly
thought to be a result of reduced food abundance and size caused by intense size
sel ective predation (Godlad et al. 1974; Kyle et al. 1988; Brocksen et al. 1970;
Trippel et al. 1989; Hartman and Bur gner 1972; Boisclair and Le%gett 1989) .
Productivity of the rearing environnment can obviously influence the abundance
and production of zooplankton and should in turn influence growth of salnon
(Brocksen et al. 1970). Johnson (1965) denonstrated a strong relationship
between productivity of several |akes and the ultimate size of sockeye snolts.
R eman (1981) reported a simlar res%c_)nse with growth of age-0 kokanee and Lew s
(1951) found a positive relationship of kokanee size-at-maturity and |ake
productivity.

Al though our relationships of kokanee growth with density and productivity
are consistent with theory, the shape of the responses was different than we had
anticipated. From our previous observations and information in the literature,
we expected to find a threshold where declines in gromh accelerated with
increasing density (R enman and Bow er 1980). Qur own sanples in one popul ation
over several years showed no detectable change in growth with roughly two-fold
variation in density (R eman and Bow er 1980). Johnson(1964, 1965) provided
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Figure 5. Relationships of length-at-age 3+ for kokanee salmon with density
of the age class and Secchi transparency in nine lakes and reservoirs in Idaho
and Oregon. ‘A’ represents observations sorted by Secchi <5m (%); Secchi 5—7m
(*); and Secchi >7m (+). ‘B’ represents the regression model predictions of
length with Secchi held constant at three values. Note the difference in
scale of the X axis between 'A° and '‘B°. The circled points in ‘A’ represent
outliers and the only data not collected in Idaho. The r2 in ‘B" are values
calculated with and without the outliers.
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data from several |akes that suggested little change in sockeye growh or
zoopl ankt on abundance until fish density reached a relatively high Ievel.
Goodlad et al. (1974) and MDonald and Hune (1984) presented information
supporting a simlar threshol d response.

Qur results suggest that, at least in older age classes of kokanee, growth
follows a continuous decline with density. Changes in growh nay be nore obvi ous
in rapidly growing or declining populations, particularly those operating at
relatively low densities. V¢ probably could not detect changes in our early
sanpl es because densities did not fluctuate enough that changes in growh could
be detected above other effects and sanpling error. Based on our nodels, a two-
fold variation in kokanee density should result in only a 10 to 20 mm change in
 engt h-at -age 2+ or age 3+.

\ believe that the difference in the response we observed wth kokanee
and that suggested for sockeye represents an inportant difference in trophic
ecology of the two forns. Sockeye typically rear in a lake for one or two years
before mgrating to the ocean. Kokanee are resident in lakes during their entire
life except for brief periods of spawning and incubation to energence. Kokanee
popul ations may consist of four or nore age classes, with oldest fish often in
excess of 200 mmin size. Sockeye populations in |lakes rarely exceed 200 mm
The interaction of larger plankton feeding fish with each other and the forage
base may be rmuch different than among snaller sizes. As the relative size of
predator to prey declines with predator growh, foraging and growth efficiencies
shoul d al so decline (Zaret 1980). That effect is probably aggravated by size-
sel ective foraging, and a shift fromlarge to small prey forns through croppi ng
(Zaret 1980). Intraspecific conpetition for a zoopl ankton food base should be
nore severe anong large than small fish and, thus, nore apparent at |ow densities
of kokanee than sockeye.

V¢ suggest that intraspecific corrpetition in kokanee i- mnore inportant
Wtﬂi rather. than. am)nc? gq[e c!rasses. The Iuenc of deingl ty on %row:h was
nuch 1'ess obvi ous in ou or age- 1+ anee han -ge classes. In

earlier work, we also found a positive rel at|onsh|p of length to age 1 (ie.
growth of young-of-the-year) with lake productivity anong several popul ations
with large differences in density (Renan 1981). Dfferences in foraging
efficiency with size may be inportant, but age classes nay al so segregate
spacial |y and through food sel ection. V& often observed young kokanee in cl unped
distributions with age-0+ and age-1+ fish at opposite ends o a | ake. O der age
classes were distributed nore uniformy: Smlar observations have been
reported for sockeye populations with miltiple year classes (Hartnan and Burgner
1972) and for yellow perch (Keast 1977). In earlier, work we -1so described a
di vergence in food habits anong age cl asses of kokanee that were accentuated wth
di stance in age (R enan 1980; R eman 1981). Hoag (1972) resorted a sinilar

di ver gence anong age-0 and age-1 sockeye.

The density-dependent response in growth of young kokanee ight be simlar
to that suggested for sockeye if kokanee densities were as igh. Johnson's
(1965) data suggested that density-dependent growth in sockeye Becane i nportant
at 1,000 to 5,000 fish/hectare. In our sanples, age-1+ kokane ranged fromO
to 500 fish/hectare. Age-0+ densities were not reported here bu were typically
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10% to 100% hi gher than age 1+. Even in our strongest popul ations, total kokanee
did not exceed 1,500 fish/hectare. Densities simlar to those that produce a
substantial decline in growh of age-0 or -1 sockeye are probably rare.

If density-dependent growth in kokanee is uninportant in the youngest age
cl asses, population regulation rmay occur through different nechanisns than in
ot her fishes. Density-dependent responses in the youngest age classes are
commonly thought to be responsible for regulation of nost popul ations (CQushing
and Harris 1973; Saila 1987). Size-biased nortality nediated by density-
dependent growth is a coomonly cited nechanism and is supported fromwork wth
sockeye (Johnson 1965; Hyatt and Stockner 1985). |f kokanee do not commonly
reach densities where growth of young fish is strongly density-dependent, another
nechani sm nust be inportant. Fecundity is strongly dependent on size of adult
females (Collins 1971). Egg size has al so been shown dependent on fenal e size
in sockeye and in other salnon (Taylor 1980; Bradford and Peterman 1987; Mirray
et al. 1989). Smaller females tend to produce snaller eggs and resulting al evins
and fry which may suffer higher nortality (Wst and Larkin 1987, Murray et al.
1989). If the nunber and quality of kokanee eggs, enbryos, or alevins and their
ultimate survival is strongly influenced by adult size, density-dependent growh
in older age classes of kokanee could be a prinary force regul ati ng popul ation
si ze.

Limtations of the Anal ysis

Qur best nodel s explained 50% to 60% of the variation in |ength-at-age.
Undoubtedly part of the remaining variation is the result of sanpling and
estimation errors or inconsistencies. Density of age-3+ kokanee, for exanple,
can be strongly influenced by fishing nortality that occurs primarily in that
year of life. Because our sanpling was done during late summer, popul ations
under heavy fishing pressure would have declined substantially just prior to
sanpling, while those with little pressure would have been rel atively stable.
Estimated density at sanpling tinme mght not accurately represent the density
influencing growth. W also found when we renoved the observations from Qdel
Lake (the only data not collected in our own sanpling progran) the nodels of
| engt h- at -age 3+ inproved substantially.

In addition to any error in the data, we believe that other factors must
i nfluence growh. Goodlad et al. (1974) and Burgner (1987) suggested |ake
tenperature reginmes could influence growth of sockeye. VW do not have seasona
tenperature information on all |akes or reservoirs, but because the |akes vary
in surface elevation, size, depth, and local climate, we expect that tenperatures
and thermal stratification could be very different. V& believe stocks of kokanee
also differ in growh potential. Kokanee are often differentiated as early
spawni ng (August to Cctober) or late spawning (Cctober to January), and both
varieties exist among the popul ati ons we sanpled. If emergence time varies,
different stocks nay experience different first growi ng seasons. Early spawning
adults may also nove out of the lake during a period of peak forage abundance
or divert energy to maturation earlier in the season than |ate spawning stocks
and, thus, experience a shorter |ast grow ng season. Fish and invertebrate
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comunities probably also are inportant. Keast (1977) thought the abundance of
other fish was the primary factor influencing growth of perch anong several study
popul ati ons. Msids are thought to conpete with juvenile kokanee (R eman and
Falter 1981; Martinez 1986; Mrgan et al. 1978), but to also provide an alternate
forage for ol der-age kokanee. Msids have been linked to substantially higher
growth rates for sonme kokanee (Northcote 1972; R eman and Bow er 1980). V¢ have
not described the fish and invertebrate commnities of our study |akes, but we
do recognize sone inportant differences. M/sis relicta is abundant in three of
the | akes (Priest, Upper Priest, and Pend Oeille), and yellow perch, |ake
whitefish, and/or pygny whitefish were common in traw sanples of several, but
not all, | akes.

Sunmmary and Concl usi ons

VW did not attenpt to incorporate other variables in our nodels because
our nunber of observations and, thus, degrees of freedomare limted, but also
because observations of sone variables are not conplete. Qur hypothesis of
interest was that fish density and | ake productivity were the prinary variabl es
i nfluencing growth of kokanee. Qur results provide strong support.

VW suggest that , density-dependent growth in kokanee is different than in
sockeye, and that a threshol d" effect probably does not occur in ol der age
cl asses. That response has inportant inplications for managenent. Managers
should anticipate that |arge changes in growh will be nost evident in
popul ations exhibiting rapid growh in nunber, or those fluctuating around
relatively low densities. Conversely, nmanagers should expect relatively small
changes in growth with popul ations operating at high densities wthout mnajor
changes in those densities. Attenpts to nmanage for '|arge kokanee mi ght
necessarily push populations to dangerously low |evels. Because popul ations
operating at mninum densities and maxi num growth |ack nuch conpensatory reserve
(e.g. Sarla 1987), those popul ations coul d be vul nerable to catastrophic events,
overexploitation, or depensatory nortalities, such as predation, that could
result in coll apse.

Qur nodel s should all ow managers to approxi mate anticipated growh for
i ndi vidual |akes, or perhaps to examne growh and approxi mate density. Qur
results mght also be linked to other nodels of size-related catchability or
fecundity to exanine tradeoffs in potential yield (to anglers) or egg production
(for hatchery prograns) wth managenent of popul ation size.

Gher variables mght be incorporated in our nodels to refine the
predictions and gain further insight into the relevant biological processes,
especially as nore | akes and observations are added to the data base. A regional
sanpling programto devel op consistent data for popul ati ons anong several states
and provinces could be particularly powerful. An attenpt to standardize sanpling
anong research and nanagenent agenci es worki ng on kokanee woul d be necessary.
V¢ think the collection of relatively sinple data on many popul ati ons can be nore
useful than the intensive study of only a few popul ations. Qur own intensive
work on popul ati on processes and trophic ecology in a fewlakes (i.e. R eman and
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Bow er 1980) produced a much different concl usion about density-dependent grow h
than the results of this nore extensive (but limted in detail) nonitoring
through tine. Intensive and relatively difficult |imological work incorporating
data on zoopl ankt on dynam cs and predator cropping in one or two |akes (i.e.
R eman and Bow er 1980) told us |ess about potential carrying capacity and the
effects of fish density on growh than did basic popul ation data and sinple
i ndi ces of |ake productivity for nine |akes.

RECOMMENDATIONS

1) Managers should exercise <caution for populations wth fish
approaching the sizes (275 to 325 mm) indicative of low densities. Managenent
goals for fish size should consider |ake productivity. Gowh and, thus, the
ultinate size of kokanee is strongly related to density and |ake or reservoir
productivity. Large changes in growth should be nore obvious in popul ations
operating at low densities. Those populations could be particularly
vuII ?erable to catastrophic events or depensatory nortalities and may risk
col | apse.

2) Kokanee sanpling conducted in the future should be collected in
a format consistent with the data summarized here. Consistent, long-term
data anmong a nunber of populations proved to be a powerful nethod for
understanding popul ation responses. Coordinated research and nanagenent
prograns designed to develop consistent |ong-term data on kokanee should be
pursued both within the State and among surroundi ng states and provi nces. This
approach should be the nost efficient neans of addressing other fisheries
problens and should be adopted whenever possible. This data base should be
updat ed and anal yzed on a regul ar basi s.
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ABSTRACT

W used kokanee lengths from sanples in the traw and angler catch to
estimate relative vulnerability to anglers by fish size. W linked regression
nmodel s of wvulnerability to previous nodel s of density-dependent growh to predict
relative changes in vulnerability, catch rate, and yield with varied kokanee
density, age-at-maturity, and | ake productivity.

Kokanee becane vulnerable to anglers at about 180 nmm and vulnerability
increased with length. Predicted vulnerability increased in exponential fashion
with declining density of fish. Exploitation may increase dramatically in
popul ations with densities of age-3+ fish less than 10 to 20 per hectare and
could result in the collapse of the fishery. Size of fish for a given
productivity can be used as an index of fish density, and unusually large fish
shoul d serve as a danger signal for managers.

~ Predicted catch rates and yields increased at a declining rate with fish
density. In_low productivity waters, yields may actually decline with higher
densities. The quality of a kokanee fishery will not increase proportionally
with stocking rate or density. Optinmum densities are probably |ower than
previously anticipated. W see little benefit in densities exceeding 40 to 50
age-3+ fish per hectare in nost |akes, or 20 fish per hectare in unproductive
| akes. Stocking rates of 100 to 500 fry per hectare should be adequate for nost
| daho waters. Because of wuncertainty in survival, stocking prograns shoul d
progress in experinmental fashion.

_ Age-at-rrat.urita/ had a large influence on predicted yield and was nore

important than fish density. Further work defining the tradeoffs between denslt?/

gnd agef—alt—nat urity or the mechani sns influencing age-at-maturity in kokanee wil
e useful.
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VWhen we varied |ake productivity over the range observed in our data
(sunmer nmean Secchi 4 to 8 m, we produced a 13-fold difference in predicted
yields. Productivity of individual |akes and reservoirs nust be considered to
develop realistic managenent goals. Sinple indices of productivity, including
Secchi transparency, total phosphorus, and chlorophyll wll provide the nopst
useful data for evaluating the relative potential of |daho kokanee waters.

Aut hor s:

Bruce E. Ri eman
Princi pal Fishery Research Biol ogi st

Debby Myers
Fi shery Techni ci an
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INTRODUCTION

Gow h of kokanee salnon is influenced by fish density and productivity
of the rearing environment (Job 1 this report). Differences or changes in growh
can produce inportant differences and changes in the fisheries. Anglers often
show a strong preference for size of fish. Large fish are usually preferred,
but the quality of the fishery ultinmately results fromtradeoffs between nunbers
and size (Anderson 1975). Catchability of fish or invertebrates nay be
i nfluenced by size of the individual (R cker 1975; MIler 1989; Beanesderfer and
R eman 1988). Wsually, larger fish are nore vulnerable to fishing or angling
Wth kokanee, nost fish in the catch are typically of the ol dest age cl ass, even
t hough nunbers of sub-adults may be nuch hi gher

As density of kokanee increases and size of fish declines, fishing success
and yield should increase, but at a decreasing rate. At some point, the fishery
may even decline. The fishery in Coeur d' Al ene Lake in northern |daho showed
a continuous decline in size of fish fromfirst introduction in the 1950s to the
late 1970s. During that period, total catch increased dramatically from tens
of thousands to hundreds of thousands of fish (Reman and Ward 1981; R enan and
La Bolle 1980). Despite the dramatic increase in nunbers harvested, total yield
by weight in 1980 and 1981 was simlar to that observed in the 1960s. Traw ing
started in 1978 showed that the popul ation renmained at high densities while
growth continued to decline into the 1980s. Catch rates and angler effort also
declined despite the very high densities of fish. Managers concluded that Coeur
d' Al ene Lake fish were maturing before they becane fully vulnerable to the
fishery. "Stunting" is a common problemin fishery managenent, and it is clear
that there can be too many kokanee.

Many | daho kokanee fisheries rely on hatchery releases for sone or all of
the recruitnent. Hatchery production provides the flexibility to manipulate fish
density. If the quality of the fishery is dependent on the density of fish, then
the ratio of fishery benefits to cost will vary with stocking rates. Tradeoffs
shoul d be substantial and will probably vary with productivity of the rearing
envi ronment. The opti num stocking rate may differ anong | akes.

In the past, kokanee stocking rates have had little quantitative basis.
Enhancenent goals for Pend Oeille Lake, |1daho, were based on the historic
catches, estimates of historic population size, and estimates of carrying
capacity. Previous work suggested little density-dependent tradeoff bel ow the
target population size (Job 1 this report; R eman and Bow er 1980). O her
stocki ng requests have been based on the Pend Ceille Lake goals (i.e. Scully
and Anderson 1989), or nore sinply on past tradition or avail able nunbers.
Managers have not typically considered differences anong | akes when sel ecting
stocking densities. In some fisheries, managers have correl ated stocking rates
with harvest and catch rates (Bill WItzius, Colorado Division of Wldlife,
unpubl i shed manuscript; Donrose 1987), but have not quantified an optinmm
stocki ng density. Managenent goals have included fish size, catch rate, or
harvest (Gahamet al. 1980; More 1986), but have |acked a quantitative basis
for determning fisheries benefits in relation to nmanagenent costs or ri sks.
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The response of a fishery to changing density and | ake productivity is
predictable with existing data. In this report, we use |ength-frequencies of
kokanee in angler and traw catches to describe relative vulnerability of varied
sizes of kokanee. W& then link the enpirical nodels of vulnerability and growth
(Job 1 this report) to predict differences in fisheries expected with varied
kokanee density and | ake productivity. W assune that the relative catch rate
or the relative yield (nunbers or weight of fish taken by an individual angler
with a constant unit of effort) represent useful neasures of fishery benefits.

The best approach to understand fishery responses will be to neasure them
directly under varying density and |ake productivity. Wth enough infornation,
an enpirical nodel should provide better predictions than our nechanistic
appr oach described above. In this report, we also summarize avail able creel and
popul ation data to determne whether the enpirical nodels are possible and to
conpare observed responses with our predictions.

Qur results should help fishery nanagers develop realistic goals for
kokanee fisheries. Qur results should also help mangers anticipate the relative
changes in a fishery given changes in stocking rates or other actions that wil
change fish density.

OBJECTI VES

Data on a nunber of kokanee fisheries are available fromcreel census and
traw sanpling. Data have been collected through both research and routine
nanagerment. In this job, we used the existing data base to address the follow ng
obj ecti ves:

1. Describe size related vulnerability of kokanee to angl ers.

2. Link nodel s of vulnerability to previous nodel s of density-dependent growt h
(Job 1 this report), and predict responses in kokanee fisheries to changes
in fish density and | ake productivity.

3. Conpar e observed responses i n kokanee fisheries with our nodel predictions.
4, Estinmate appropriate stocking densities for hatchery supported kokanee
fisheries.
METHODS

Vul nerability

V¢ described size-dependent vulnerability to angling by relating |ength-
frequencies in angler catches to length-frequencies in traw sanples. Lengths
(total length) in angler catches were recorded in routine creel census. Lengths
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intraw catches were recorded during annual popul ation sanpling with a mdwater
traw described in Job 1 of this report. Al fish were recorded in 10 mm|ength
groups, with length listed as the lower bound of the length interval. VW [imted
the frequency distributions in both sanples to fish larger than 170 mm the
smal | est group observed in any angler catch. W used only data where both
sanples were collected within the sane 4-week period. Typically, trawing was
conducted in a 2- to 5-day period within a 2- or 4-week creel census interval.

VW calculated relative vulnerability by dividing the proportion in each
classe considered in the catch by the same proportion in the traw. V¢ assumed
that traw sanples accurately reflect the size conposition of the popul ation.
The traw gear coul d produce size-biased sanpl es by selecting against large fish
that avoid the gear better than small fish. W do not think bias is |arge
because popul ation estimates of ol der age classes have been sinilar to escapenent
estimates and because estinates of nortality among age classes are consi stent
with observed exploitation rates (Bowes et al. 1989). V& calculated a relative
vul nerability (Vr) between size cl asses.

V¢ standardi zed the relative vulnerability of each size class against that
for 230 mmfish arbitrarily given a value of one. W used 230 nmas the standard
because it was the smallest length group found in all catch sanples.

The resulting index represents a standardi zed vulnerability relative anong
all size classes. A value of zero nmeans that no fish were caught. A value of
two means that, given equal densities, twice as many fish will be caught by a
unit of effort than for a size class with a value of one.

W used linear regressions to describe relationships between relative
vul nerability and | ength.

Predi cted Fi shery Responses

To predict the influence of fish density on vulnerability, yield, and catch
rates we linked regression model s of growth against fish density and productivity
(Job 1 this report) to our regression nodels of vulnerability (Figure 1, Table
1). W assuned that the catch rate in a fishery is directly proportional to
density x vulnerability. W further assuned that yield to the angler is equa
to catch rate x fish weight. W predicted weight fromlength based on standard
regressions (Ricker 1975) derived fromtraw data in four |lakes. Qur results
do not represent actual catch rates or yields, but relative values wthout unit.
Results can only be used to examne the relative change in yield or catch rate
anticipated with changes in fish density or |ake productivity.

V¢ used a conputer spread sheet to repeat calculations of relative yield
and catch rate for fish densities of one to several hundred fish per hectare.
VW predicted responses at three levels of productivity represented by Secch
depths of 4, 6, and 8 m (see Job 1 this report). W ran an initial set of
simul ations for both age-2+ and age- 3+ fish.
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Figure 1. Flow chart for model used to predict relative vulnerability to
anglers, catch rate, and yield for kokanee at varying densities and in lakes
or reservoirs of varying productivity. Numbers represent equations use in the
model and summarized in Table 1.



Table 1. Equations for nodels used to predict relative vulnerability,
catch rate, and yield fromkokanee density and | ake productivity.
A flow chart of the nodel and equations is shown in Figure 1
L =1length (m); x = density (fish/hectare); s = Secchi (m; V, =
relative vulnerability; C, =relative CPUEE W= weight (g); and
Y,= relative yield.

(1)a Age 2+ L = 355- 14.66(Inx) - 14.32(s)
Age 3+ L = 394-16.45(lnx) - 14.72(s)

(2) V, = 0.023(InL) - 4.302

(3) G = Vi(X)

(4)P w 1 .21'10_6(]‘3'35)

(5) Y = C:(W)

romJob 1, this report.
bunpubl i shed | engt h-wei ght relationship for Pend Oreille Lake.
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In reality, kokanee from several age groups will contribute to the catch
depending on their size and vulnerability. Age of maturation wll have an
i mportant influence on the ultimate size of fish available to anglers and, thus,
the relative yield. To predict the effect of changing age-at-maturity, we
conbined our nodels of yield for age-2+ and age-3+ fish. W assunmed average
survival between age 2+ and age 3+, when all fish nmature at age 4, to be equal to
the nean survival estimated for all |akes (see stocking rates below). To
sinmulate fish maturing earlier, we inposed additional nortality between age 2+
and age 3+. The additional nortality was equal to the proportion maturing at
age 3 (i.e. age-2+ fish maturing at age 3 will not survive to age 3+).

We exami ned the uncertainty in our yield predictions caused by uncertainty
in the relationship between wvulnerability and Ilength. W repeated our
simulations with a range of coefficients for the vulnerability-length nodel. W
used our regression nodel coefficients from the pooled data for a base
simulation. W repeated the simulations with an upper and then |ower value for
the slope, an upper value of the intercept and, finally, upper values for both
paraneters conbi ned. The values produced a range of vulnerability responses
simlar to those observed in our data.

Enpiri cal Responses

We used actual creel data for populations sanpled by trawl to exam ne
rel ati onships of catch rate (kokanee/angler hour), yield to the angler (kg/angler
hour), or effort (total angler hours) against fish density, productivity (Secchi
depth), and fish Iength (Septenber |ength-at-age 3+). W assunmed effort to be a
measure of quality in the fishery. W hypothesized that effort anong |akes
should respond directly to changing catch rate or yield. If that is true,
response in effort should then be simlar to that predicted for catch rate and
yield with our previous nodels. Because catch rate and yield in our nodels were
dependent on fish size, we also anticipated that enpirical catch rates and yields
shoul d be related to fish density and | ength.

St ocki ng Rates

We summarized survival estimates for wild and hatchery-rel eased kokanee
to hel p managers determ ne stocking rates for hatchery-supported fisheries. W
used the responses from the previous simulations to identify densities beyond
which little benefit would be expected in the fishery. Stocking rates can be
approximated as the density of fry necessary to produce the desired density

gi ven antici pated survivals.
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RESULTS

Vul nerability

V¢ found enough data to estimate vulnerability for five occasions in two
fisheries (Table 2). Estimates of relative vulnerability increased with size
of fish in all cases (Figure 2). The rate of increase varied anong the
observations. Log-linear regression nodels fit the data well, with estinated
slopes ranging from0.013 to 0.064 (Table 3). W calculated intercepts with
the X axis (length where vulnerability = 0) ranging from about 170 mmto 220
mm Models of vulnerability used in the uncertainty analysis of yield
predictions (Table 4) produced responses sinilar to that observed in our data
(Figure 2).

Predi ct ed Responses

Predicted vul nerability declined in exponential formwth increasing fish
density (Figure 3). Productivity influenced the nagnitude of the response but
not the formor rate of change.

Predictions of relative yield for age-3+ kokanee increased at a declining
rate with increasing density (Figure 4). The rate of decline was strongly
i nfluenced by |ake productivity. Wth the lowest productivity (Secchi = 8),
yield declined dramatically at densities above about 20 fish/hectare.
Productivity also strongly influenced the nagnitude of yield. Peak yield ranged
about 30-fold anmong the three levels of Secchi transparency, and yield at 20
fish/hectare ranged about 15-fold. Predictions of relative catch rates followed
a sinmlar pattern, though peak catch rates occurred at higher densities than peak
yields (Figure 5).

Predictions of yield for age-2+ fish followed patterns |ike those for age-
3+ fish with two inportant exceptions; the overall nagnitude of yield was |ower
(age 2+ peaks were about 15% of age 3+), and the decline in yield at higher
densities was nore pronounced (Figure 6). Conbined yields for age 2+ and age
3+ varied substantially with age-at-naturity. A change in mean age-at-naturity
from3.5 to 4 years (i.e. 50% of age-2+ and 100% of age-3+ fish mature) produced
a 1.8-fold increase in total yield (Figure 7).

Uncertainty in the vulnerability coefficients influenced predictions of
yield (Figure 8). Changingthe slope altered the nagnitude of predicted yield,
but did not dramatically change the form of the response. Changes in the X
intercept (length where vulnerability = 0) had an inportant influence on both
t he magni tude and shape of the response. Increasingthe intercept produced a
peak in yield at relatively |ow densities. The result was sinlar to the base
simulation at | ow productivity.
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Table 2. Sanpled angler catch and trawl catch data used to estinate the

i ndex of relative vulnerability with 10 mm | ength group.
Length Angl er Traw Vul nerability
ar oup catch cat ch i hdex Sour ce
Pend Oeille 1977 Bower and Hlis 1978
Raw Data Fil es
160 0 0 -
170 0 0 -
180 0 3 --
190 10 86 .08
200 20 152 .09
210 48 136 .25
220 28 20 . 98
230 40 28 1.00
240 59 20 2.07
250 31 8 2.71
260 24 3 5. 60
270 14 2 4. 90
280 4 0 -
290 0 0 -
Pend Oreille 1978 Blis and Bow er 1979
Raw Data Files
160 0 0 -
170 0 0 --
180 2 18 . 06
190 6 87 .04
200 17 33 .30
210 26 53 .29
220 32 42 .44
230 60 35 1.00
240 133 25 3.10
250 84 18 2.72
260 47 3 9. 14
270 11 1 6.42
280 1 2 0. 29
290 0 0 --
Pend Oeille 1979 Hlis and Bow er 1980
Raw Data Fil es
160 2 21 . 04
170 2 3 . 28
180 2 2 .41
190 24 29 .34
200 41 59 .29
210 63 73 . 36
220 31 26 .49
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Tabl e 2. Conti nued.

Lengt h Angl er Traw Vul nerability
G oup catch catch i ndex Sour ce

230 46 19 1.00

240 102 29 1.45

250 123 18 2.82

260 73 10 3.02

270 33 4 3.41

280 9 1 3.72

290 0 0 --
Pend Oreille 1980 Ellis and Bow er 1981

Raw Data Files

160 0 0 -

170 0 0 --

180 1 0 --

190 3 26 .13

200 16 51 . 36

210 33 35 1.08

220 43 42 1.18

230 20 23 1.00

240 47 18 3.00

250 105 18 6.71

260 156 11 16. 31

270 108 0 --

280 43 2 --

290 0 0 -
Spirit Lake 1981 Ellis et al. 1982

160 0 3 --

170 0 17 --

180 0 22 --

190 0 1 --

200 0 2 --

210 2 15 --

220 0 15 --

230 1 10 1.00

240 1 7 1.43

250 17 15 11.33

260 27 23 11. 74

270 12 6 20. 00

280 1 0 -

290 0 0 --
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Figure 2. Relationships of relative vulnerability to anglers and length for
kokanee in two lakes. A represents the actual estimates from the data in
individual length groups. B represents the regressions used to predict
vulnerability in our model. Coefficients for the regressions are summarized
in Table 4.
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Table 3. Regression nodels fit to the vulnerability index against |ength
data available for five occasions on two | akes.

Lake Year Reqgr essi on nodel R
Spirit Lake 1981 In (vulnerability + 1) =- 14.067 ”12}?34: 0.93
Pend Oreille 1977 In (vulnerability + 1) =_. 4 325+ 0.023 (length) o0.94
Pend Oreille 1978 In (vulnerability + 1) =_. 4 925+ 0.026 (|ength) 0.88
Pend Oreille 1979 In (vulnerability + 1) =_ 5 185+ 0.013 (length) o0.86
Pend Oeille 1980 In (vulnerability + 1) =_. g 820+ 0.035 (length) o0.87
Pool ed?® In (vulnerability + 1) =_. 4. 302+ 0.023 (length) 0.71
2all | akes, all years
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Table 4. Paraneters for nodel s® of relative vulnerability (y) and |l ength
(L) used to exami ne uncertainty in predictions of relative yield.

Sl ope Intercept with X axis
(b) (1)
Best Fit 0. 023 185
Al'ternative Mdels 0. 028 185
0.018 185
0. 023 220
0. 060 220

dpredictive model y = e[(L-1)(b) - 0.0006] -1

TABT1. JB2
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Figure 3. Predictions of relative vulnerability to anglers for age 3+ kokanee
at varied densities and in waters at three levels of productivity.
Productivity is represented by Secchi transparency.
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Figure 4. Predictions of relative yield (no units) of age 3+ kokanee at
varied densities and in waters at three levels of productivity. Productivity
is represented by Secchi transparency.
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summarized in Table 4 and Figure 2B.



Enpiri cal Responses

Conpl ete creel and popul ation data were available for twel ve observations
(Table 5). Catch rate was significantly (p < 0.05) correlated with both fish
density and Secchi depth (Table 6). Effort was significantly correlated wth
fish density and catch rate. The data suggest asynptotic responses in catch rate
and effort and a doned response in yield (Figure 9). Effort appeared to be
directly related to catch rate (Figure 10). Regressions incorporating second
i ndependent variables (fish density, Secchi depth, or fish length) did not
explain significantly nore of the variation in catch rate, yield, or effort than
any single variable.

St ocki hg Rat es

Survival of hatchery-produced fry fromrelease to the first fall was
estimated in Pend Oeille Lake to range from about 6% to 30% (Bow es et al.
1989). The Pend Oeille program goal is for survival of 30% Consistent
survi val between 20% and 30% shoul d be possible with proper rel ease size and
timng (Bowes et al. 1989). Survival estinmated between ol der age classes in
all of our study |akes ranged from57%to 90% (Table 7). Wth good fry rel eases,
we estimate survival fromrelease to age 3+ should range from6%to 12%
Survival from hatchery fry to fish fully recruited in the fishery has been near
10% in other |akes (Parkinson 1986). Initial stocking rates for nost | akes
shoul d therefore range fromabout 8 to 17 times the target density at age 3+.

DI SCUSSI ON

Relative vulnerability was strongly related to fish size. Sze selectivity
by fishing gears is comon (Beanesderfer and R eman 1988; R cker 1975; Ralston
1990). S ze- or age-regulated recruitnent to a fishery is also well established
(R cker 1975). The mechani smcontrolling vulnerability to angling has not been
defined for kokanee. Size-related differences in fish distribution, feeding
habits, swimmng speed, and the relative size of gear or bait to the fishes nouth
mght all be inportant. Estimated vulnerability was not constant anong years
or between popul ations. WMulnerability nay vary with environmental conditions,
or perhaps the popul ation of anglers. Kokanee anglers in lIdaho use a variety
of lures or baits, with a particular gear often a matter of |ocal preference.
Angl ers we censused on Coeur d Alene Lake and Spirit Lake often still fished with
small baited jigs ("handlining"), while anglers on other waters fished
exclusively by trolling.

A though the slope may vary, vulnerability should be expected to increase
with size, perhaps dranatically. Qur data for Spirit Lake, for exanple, show
that 270 mm kokanee could be caught at 20 times the rate of fish 230 nm | ong.
Such differences should have an inportant influence on exploitati on anong size
and age classes and on the fishery itself.
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Table 5. Avail abl e observations of kokanee density (age 3+), |ength
(age 3+), catch rate, yield to angler, and total effort for
angl ers seeki ng kokanee.

Age 3+ Sept . Cat ch Angl er
Wat er density length rate Yield ef fort
year (no/ha) (mm (no/hr) (k% hr) (hours) Sour ce

Pend Oreill e Lake

1977 29 235 1. 60 0.17 136,000 _
1978 57 235 1.38 0.16 118,210 Ri eman 1981
1979 30 245 1.34 0.17 137,000 Blis &Bow er 1980
1980 46 255 1. 40 0.19 121,000  Hlis &Bow er 1981
1985 16 262 1.03 0.14 64,700 Bowl es et al. 1987
Priest Lake
1978 7 245 0.29 0.03 15,000 Bow er 1979
Bow er 1981
Payette Lake
1988 9 240 0.08 0.02 28. 000 Scul |y and Ander son (1989)
Agency files
Qoeur Lake
d Aene ]
47 245 1.22  0.07 172,000 R eman & Labolle 1980
1979 110 225 1.12  0.08 228,000 R eman & Vard 1981
1980
Spirit Lake _
1981 161 260 1.26 0.11 71,000 Ellis et al. 1982
Dwor shak
Reservoir
310 1. 47 0.21 140, 416 Mauser 1989
1989
del | Lake
310 0.55 0.13 114,000
1974 10 Lewi s 1975
TABT1. JB2
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Tabl e 6. Pearson Correlation coefficients for data used to
descri be rel ationshi ps i n kokanee fisheries with fish
density, fish length, and water productivity (Secchi
depth). Significant correlations (p s 0.05) are

noted by *.
Angl er Cat ch Rel ative
effort rate yield
Density 0. 298 0. 346 -0. 059
Log (Density) 0.523* 0. 587* 0. 135
Catch Rate 0. 626* - -
Log (Catch Rate) 0. 647* - -
Secchi -0. 593* -0. 706* -0.392
Log (Secchi) -0. 523* -0. 638* -0. 319
TABT1. JB2
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Figure 9. Relationships of estimated angler effort, catch rate, and yield to
the angler, against fish density in actual kokanee fisheries. Lines were fit
by inspection. Data are summarized in Table 5.
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Table 7. Summary of kokanee survival from hatchery rel ease

to age 3+. Estimates for hatchery to 0+ are from

Bowl es et al.

fromtraw sanpling of kokanee densities in sequential

(1989).

The renmai ning estimates are

years as described in Job 1 of this report.

Age Sur vi val
Hat chery Rel ease to O+ 0.06 — 0.30
O+ to 1+ 0.60 — 0.30 18
1+ to 2+ 0.90 28
2+ to 3+ 0.57 27
TABT1. JB2



Qobvi ously, exploitation could be higher in older age classes. G ven
simlar effort, the level of exploitation should al so be higher in popul ations
with faster growng individuals. W predicted that relative vul nerability shoul d
increase in exponential formwth decreasing density. If fishing effort remained
stable, a decline in fish density should result in increased exploitation.
Several authors have shown that exploitation of age-2+ kokanee was substantially
less than that of age-3+ and ol der fish (Lew s 1974; R enan and Vérd 1981; Bow es
et al. 1986; Klein 1979). Lewis' (1974) data also indicate that exploitation
can be higher in years of |lower fish densities.

Qur results suggest fishing nortality could be depensatory (increasing
with decreasing nunber) and, therefore, could be a destabilizing force.
Popul ati ons operating at |low densities may produce very large fish that support
popul ar fisheries. If fishing effort is relatively high and the population is
unstabl e, collapse is possible. Hathead Lake, Mntana, once supported a popul ar
fishery for large (270 to 400 mm) kokanee. Kokanee in the catch increased in
size to the largest recorded shortly before the fishery collapsed in 1986 (Hanzel
1984, 1987; Hanzel et al. 1988). Managenent goals were for large fish (G aham
et al. 1980), even though the fishery was exploited at a relatively high rate.
Data fromFrailey et al. (1986) indicate that in Fl athead Lake the adult fish
were exploited at 70% to 75% several years before the collapse. If the
popul ation declined, as suggested by increasing size of fish, and effort renai ned
stabl e, increasing vulnerability may have pushed expl oitati on even hi gher.

The risk of collapse may be nore inportant in productive |akes where fast
growth results in high vulnerability. The effects of exploitation mght also
be nore serious in lakes with other depensatory nortalities, such as predation.
Any | ake operating at |ow densities (less than 10 to 20 fish/hectare) may risk
over-exploitation if fishing effort is high.

H gh kokanee densities also should be a concern in fishery managenent.
Qur nodels predicted that relative yield and catch rate will not increase
proportionally with density and may, in fact, decline. W should anticipate
little benefit to densities of kokanee (age 3+) in excess of 40 to 50
fish/hectare for |akes of internediate productivity (sumer nean Secchi about
6 m). More productive |akes could support |arger nunbers, but in |ow
productivity |akes, densities higher than 20 kokanee/ hectare should result in
much poorer fishing than |ower nunbers. In fisheries supported by hatchery
production, the ratio of fishery benefits to cost of nanagement shoul d decline
dramatically as popul ati ons approach these densiti es.

Productivity of the rearing environnent will have an inportant influence
on the quality of a kokanee fishery. Qur results indicate that differences in
productivity represented by Secchi depths of 6 to 8 mcan produce a 4-fold
difference in relative yield. Dfferences of 4 to 8 mcan result in a 13-fold
range of relative yield. W should not anticipate simlar fisheries in all
|lakes. W nmay also expect a substantial decline in fisheries in aging
reservoirs. Unproductive |akes may pose a particularly difficult managenent
probl em The range of suitable fish densities could be quite narrow Densities
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much in excess of 20 fish/hectare may result in poor fisheries, while those
substantially |ower may risk coll apse.

Age-at-maturity should also influence the quality of a fishery. W
predicted, for exanple, that a shift of mean age-at-naturity from3.5 to 4.0
woul d produce the same increase in yield as an increase in density from10 to
60 fish/hectare (Secchi of 6 m. A shift to earlier spawning could result in
a substantial loss in the fishery sinply because fish die before they becone
readily available to the anglers. In Coeur dAlene Lake, a decline in the
kokanee fishery was associated with a shift to younger, but nore numerous,
adults. Conversely, inmproved kokanee fishing in Pend Oreille Lake has been
associated with larger and ol der adults w thout any appreciabl e change in kokanee
density (Melo Maiolie, Idaho Fish and Gane Region 1, personal comrunication;
Bow es et al. 1988). W suggest that varying age-at-maturity explains much of
the variation in these fisheries.

Age-at-naturity nay be influenced through the environnent and genotype.
Faster growing fish often mature earlier (Qaynoth 1986; Kato 1980; Lew s 1971,
Klein 1979), but stock or genetic influences may al so be inportant with kokanee
(Lewis 1971) and sockeye (Rogers 1987; R cker 1982). Lewis (1971) found that
four stocks of kokanee showed consistent differences in age-at-nmaturity.

The size-at-maturity and, thus, size of fish available to anglers nay
depend on growth of sub-adult fish. Kato (1980) found in a population with fast
growth that variation in age-at-maturity explained alnost all of the variation
in adult size. Lewis (1971) found a simlar result in relatively productive
| akes, but in unproductive |akes he found no rel ationship between adult size and
age-at-maturity. Wien growmh was slow, an additional year of life did not
produce a difference in size greater than that between the nature and i mature
fish in the cohort (Figure 11). The benefits of delayed maturity wll probably
depend on growh rate of individuals. In unproductive |akes or popul ations
operating at very high densities, a delay may produce little benefit to the
fishery.

Sill, the ability to delay maturity could provide substantial benefits
in sone fisheries. Eric Parkinson (British Colunbia Fish and WIldlife,
unpubl i shed manuscript) has proposed that size of fish could be maximzed by
bal anci ng the tradeoffs between growh and age-at-maturity. Assunming that faster
growing fish mature earlier, internediate rather than | ow densities wll produce
the largest fish. Gowh and, thus, size-at-maturity mght be controlled by
regul ating density of the popul ation through stocking. In sone fishes, age-at-
naturity appears to be related to initial growth or size of juveniles (Randall
et al. 1986; Bradford and Peternman 1987; Meerburg 1986). As an alternative, it
nmay be possible to influence age-at-maturity by controlling initial growh of
fish produced in hatcheries. It may al so be possible to influence age-at-
nmaturity through selection of the donor stock (Lewis 1971), sel ective breeding
of a stock, or through genetic sterilization. The manipul ation of age-at-
naturity is not clearly possible, but the benefits could be |large. Further work
on age-at-maturity should be useful.
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Figure 11. Relative differences in size at maturity for kokanee maturing at
age 3 and age 4 under two different rates of growth. Shaded areas represent
mature fish. The arrows represent the mean size at maturity expected when the
rate of maturity at age is the same in both populations. The figure was
conceptualized from the results of Lewis (1971) and Kato (1980).
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@ ven our range of survival fromhatchery fry to age 3, optimm stocking
rates could range from8 to 17 times the target densities. Stocking rates shoul d
be less if there is consistent natural production. Because our nodels and
survival are uncertain, the stocking recomendati ons have a w de range. Because
of the uncertainty, stocking should proceed in experimental fashion. V¢ suggest
initial stocking rates of about 10 tines the target density for age-3 fish.
Stocking densities should be held constant for several years until a pattern of
survival and growmh can be established. Once a base of information is
establ i shed, stocking rates can be altered to nove the fishery toward the
managenment goal. Qur nodels should be particularly useful at that point to
predict the relative change in fish density and stocking necessary produce the
desired changes.

Target densities can be based on desired size of fish or relative changes
in catch rate or yield. An index of productivity will be necessary for a nanager
to determine realistic goals. Densities exceeding those described above are not

advi sed unless the primary use of kokanee will be as forage for predators.
Benefit to cost for nost hatchery-supported prograns will probably be realized
at the | owest densities that still generate significant angler interest.

Limtations of the Anal ysis

Qur predictions of the density-related tradeoffs in kokanee fisheries
was based on a sinplistic approach linking enpirical nodels of vulnerability
and of growth. W did not consider the effects of exploitation on fish
abundance. Qur results are also relative. VW do not predict actual yield, which
would vary with fishing effort in addition to fish size and density. Qur results
best predict the quality of fishing where recruitrment is not influenced by
expl oi tation of the adult stock.

The nunber of observations of growh and vulnerability were linted at
low densities and fish larger than 270 mm Results predicted for popul ati ons
operating below about 10 fish/hectare thus represent extrapol ations beyond the
range of our data. Conpensatory responses in those ranges may be ruch different
fromwhat we anticipate through our nodels.

Qur observations were |limted to kokanee of age 3+ and younger. Many
popul ati ons have significant nunbers of fish in older age classes. V¢ believe
differences resulting fromfish maturing later than age 3+ should be sinmlar to
those predicted between age 2+ and age 3+. Those differences could be |ess,
however, because growh rate continues to decline with size, creating a declining
differential in size between age classes. An asynptote in growh neans that the
fishery benefits from delaying maturity by a year will decline wth increasing
age. The effect should be simlar to that predicted from slower growh in
unproductive | akes.

Qur simlations assuned that catch rates are directly proportional to
density of constant size fish. In reality, catch rates probably will not
increase in direct proportion to density. Rather, catch rates shoul d increase
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at a declining rate (see R eman and Apperson 1989). If that is the case, our
predictions of catch rate and yield are optimstic. Catch rate and yield may
increase with densities at a rate that declines faster than predicted. otimum
densities could be even |l ower than those predicted here.

Qur analysis of uncertainty showed that the shape of the vulnerability
response also will have an inportant influence on the fishery at varying
densities. The slope of the response influenced the nmagnitude of catch rate
and yield but did not alter the basic shape and, thus, would not influence
predi ction of optinum densities. The intercept of the response, however, did
have an inportant effect. Increasing the intercept produced a nore dramatic
decline in yield at higher densities. Again, optinmmdensities could be |ower
t han suggested by our predictions.

Finally, our nodels incorporate sanpling error and inherent variation in
growh and vulnerability that we could not explain. Qur predictions are not
preci se and do not include random errors. W also could not incorporate the
effects of other variables that nust influence gromth (see Job 1 of this report).
Continued nonitoring of kokanee fisheries should |ead to nore preci se nodel s
and a better understanding of other inportant variables. An enpirical approach
predicting yield and catch rate directly from observations over a |arger nunber
of lakes could elimnate much of the uncertainty in our nodels. The enpirica
responses summarized in this report were simlar to our predicted responses, but
those data are too limted to provide accurate predictions thensel ves. Better
enpirical nodels should al so be possible with a routine nonitoring program

Summary and Concl usi ons

Qur results support several inportant conclusions. S ze and vulnerability
will increase with declining densities of kokanee. Exploitation nay increase
dranmatically and poses a risk of collapse in naturally-supported popul ations.
Lengt h- at-age for kokanee can be used as a rough index of density and the risk
of overharvest or other depensatory nortality. Age-4 spawners (aged as 3+ in
final sumer) larger than 300 mm 250 mm or 230 nm shoul d be common at densities
of 10 to 20 fish/hectare in productive (Secchi = 4), internediate, and
unproductive (Secchi = 8) waters, respectively. Larger fish in waters supporting
heavy fishing pressure or inportant predators should be a danger signal to the
manager .

The quality of a fishery wll not increase directly with fish density and,
in unproductive |akes, may decline. Optinmum densities will depend on | ake
productivity, but probably are lower than previously anticipated. Qurrent goal s
for rehabilitation of the Pend Oeille kokanee fishery are about 800 fry, or 80
adults per hectare. Unless age-at-maturity shifts consistently to age 5, or
unless nortality to predators increases, we expect little benefit from pushing
hat chery production to those goals. Stocking rates of 100 to 500 fry per hectare
shoul d be adequate for all but the nost productive |akes. Even in productive
waters, stocking rates on the | ower end may provide the greatest benefit.
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Productivity will have a dramatic influence on the quality of a fishery.
Real i stic nmanagenent goals will reflect the potential of a system Kokanee
waters can be characterized with data on Secchi transparency, chlorophyll, and
total phosphorous for conparison with data presented here.

Age-at-maturity may have a dranmatic influence on quality of a fishery.
Managenent of spawning age could be very useful and further research should
focus in this area.

Qur results should not be used to establish hard goals but, rather, to
establish sone initial targets for fish density and stocking rates that will be
nodi fi ed through adaptive nanagenent. Qur results should be nost useful in
hel pi ng managers understand the relative potential of different fisheries and
the relative changes in growh, catch rate, or yield that can be expected with
changes in managenent. Continued nonitoring can inprove our ability to predict
and manage these fisheries.

RECOMMENDATIONS

1) Populations operating at low densities (10 to 20 fish/hectare) may risk
col  apse through overexploitation or other depensatory nortality. Managers
shoul d use information on the relative productivity of a water and kokanee
length-at-age as an index of density. Unusually large fish should be viewed as
a danger signal, harvest should be managed carefully, and stocking of predators
shoul d be curtail ed.

2) In lakes wthout natural reproduction, initial kokanee stocking rates
should be 100 to 500 fry per hectare. The higher rates should be used in nore
productive | akes. Stocking should be held constant for at |east four years, or
until a pattern of growh and survival is established, and then altered in an
experinmental fashion to approach the managenent goal .

3) Managenent goal s, such as size of fish, should be based on the relative
productivity of the water body. W |ack consistent data on nany | akes and
reservoirs that are, or will be, managed for kokanee. At a mninmum sanpling
to describe sunmer nean Secchi transparency shoul d be done wherever possible.
QG her data on total phosphorus, |ake norphonetry, conductance, and summer mean
chl orophyl | should be considered as part of a statew de inventory.

4) Age-at-maturity will have a major influence on yield in nany | akes.
An ability to nanage age-at-maturity could be nore useful than other tools. New
research on nechani sns controlling age-at-maturity in kokanee shoul d be pursued.
In | akes where spawni ng popul ations are routinely sanpled, age frequency shoul d
be estimated fromotoliths.
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ABSTRACT

V¢ created a conputer data base of biological and fishery infornmation from
74 kokanee | akes and reservoirs throughout the western states and British
Col unbi a. Kokanee yield estinmates were available for 28 of these |akes and
reservoirs. Conplete yield and productivity information were limted to | akes
of low or intermediate productivity. W found a positive relationship (r? = .72)
between effort (rod hours/hectare) and kokanee yield. The data suggest several
rel ati onships between yield and productivity. Mrphoedaphic index and
chlorophyll a showed stronger relationships with yield in |akes at elevations
<1,000 m Total phosphorus and Secchi transparency showed stronger relationships
with yield in |akes at elevations >1,000 m Devel opnent of enpirical nodels of
kokanee yield will require nore conplete estimates of yield and observations over
a wider range of |ake productivity. Larger sanple size will also allow the
i ncorporation of nore than one independent variable into our nodels.
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| NTRODUCTI ON

There is probably a wide range in the potential yield of kokanee fisheries
found throughout Idaho and the Pacific Northwest region (Job 2 this report).
The biol ogi cal and physical characteristics of the |ake, the kokanee popul ati on,
and the anglers all can affect the yield in a fishery. Managers could use a
sumary of infornmation froma variety of kokanee |akes to provi de perspective.
If the information is standardized and readily avail able, evaluations and
conpari sons could be nade to devel op nore realistic goals for individual kokanee
fisheries.

Qur objectives were: 1) to conpile such a data base; and 2) to devel op
enpirical nodels that would allow the prediction of potential kokanee vyield
based on the characteristics of the |ake or reservoir of interest.

Many estimators of fish yield have been proposed. Mthods range from
sinple enpirically-derived indices of fish production to el aborate ecosystem
simulation nodels (Leach et al. 1987). Enpirically-derived estimators of fish
yield include neasures of |ake norphol ogy, water chemstry, biological indices,
and derived ratios such as norphoedaphic index (total dissolved solids/nean
dept h) .

V¢ hypot hesi zed that potential yield (per surface area) for kokanee is a
function primarily of |ake productivity and, secondarily, of other physical and
bi ol ogi cal characteristics of the system Realized yield should be a function
of the potential yield and fishing effort (CGoddard et al. 1987). A nodel of
potential yield should be possible given enough observations. Realized yield
shoul d be possible by incorporating effort as a variable. To be useful for the
manager, the data required for the nodel nust be easily obtained from norna
physi cal and biol ogical inventory. Therefore, we limted our analyses to those
ki nds of data.

W began by conducting a region-w de survey of existing biological and
fishery informati on. W gathered managenent reports and agency files to
summari ze data for ldaho |akes and contacted fishery managers and researchers
to fill holes in the data when informati on was available. VW then standardized
the information and sunmari zed it on a conputer data base.

METHODS

V& conpiled information on |ake characteristics, the kokanee popul ation
and the fishery from kokanee | akes and reservoirs throughout several western
states and British Colunbia (Appendix A). Lake characteristics include |ake
nor phonetry (surface area, volune, and depth), and measures of productivity
(nmor phoedaphi ¢ i ndex (MEl), mean summer Secchi depth, total phosphorus, and
chlorophyll 'a’). W expressed MEl as conductivity/nean depth rather than tota
di ssol ved solids/mean depth as defined by Ryder (1965) because conductivity was
the nmeasurenent nornal |y avail able. Conductivity correlates significantly with
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total dissolved solids and may be used in place of total dissolved solids
(Hutchi nson 1957, Ryder et al. 1974). Kokanee popul ati on data includes estinates
of kokanee abundance and growth, spawning escapenent, and age-at-maturity.
Harvest data include yearly estimates of kokanee yield, predator yield, and
angler effort. W also conpiled a species conposition list for each |ake. The
format of all variables and a summary of observations by variable is outlined
i n Appendi x B.

Al data cane fromexisting files and reports or personal comrunicati on.
V¢ requested information directly from Montana Departnent of Fish, Wlidlife and
Par ks, Washington Departrment of WIldlife, and the Mnistry of Environnent in
British Colunbia. Data for O egon, Wah, and Col orado | akes were taken from
published literature and through personal comunication. W gathered data for
| daho | akes from exi sting regi onal nmanagenent reports and agency files.

In an attenpt to be consistent in our data, we designated several
conventions. W designated age change at the time of annulus formation in the
spring. Therefore, a fish that was collected in the first sumrer/fall was age
0+. Likewi se, a spawner maturing after the third sumrer/fall was age 2+ Wen
designating age-at-maturity, if spawers were split evenly between two ages (i.e.
50% spawn at age 3 and 50% spawn at age 4) we listed the predom nate age as 3.5.
V¢ requested tinme of sanple (nonth) be noted so length data coul d be standardi zed
by growth projections. Lengths that we entered into the data base, however, are
the actual neasured lengths (mmtotal length) at the tine of collection.

W requested ranges, as well as nean values, for estinmates of spawni ng
escapenent, hatchery suppl enentati on, kokanee abundance, harvest, and angl er
effort. Wiere possible, nean estimates reflect the nmean of the highest five
consecutive years of available data. The sanple size was noted if |ess than
five consecutive years of data were avail abl e.

Whenever possible, we cal cul ated kokanee yield estinates (kg/hectare/
year) from harvest data (nunber and nean size). Wen nean size of fish in the
harvest was given as length rather than weight, we cal cul ated wei ght using the
| engt h/ wei ght relationship for kokanee in Pend Oeille Lake.

W used dBase Il Plus to set up three data files to store and nanage the
information. One data file, Regional.dbf, contains the majority of the
information. Two supporting data files are Species.dbf (species conposition),
and Dsource. dbf (sources of information).

Regi onal . dbf contains 64 character or neno fields (Appendix B). The |akes
are sorted by state or province using the index file State.ndx. V& set up three
dBase report fornms: Lake.frm (Appendix C, Popn.frm (Appendix D), and
Fi shery.frm (Appendix E). The report forns can be used to generate hard copies
of selected information from Regi onal . dbf.

Speci es. dbf contains 84 data fields (one for each species). An 'x' is
pl aced in each species field where that species occurs for each observation.
Abbrevi ations for the species nanmes are in Appendix F, as well as a copy of the
data reports Sp_Conp.frmand Sp_Conp2.frm
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Dsour ce. dbf contains a nunbered |ist of the sources of information for

the data (Appendix G. The sources are cross-referenced in Regional.dbf by
nunber .

V¢ summari zed the total nunber of observations that were available in each
data field. W plotted frequency distributions of the |akes summarized by total
phosphorus, nean sumrer Secchi depth, chlorophyll 'a', and kokanee yield for all
| akes in the data base where the specific data were avail abl e.

To test our hypothesis that yield is a function of productivity and effort,
we plotted yield agai nst each of four productivity indices. W used correlation
and regression analysis to examne rel ationships between yield (kg/hectare) and
effort (hour/hectare) and between yield and each of four indices of productivity.
VW then stratified the data by elevation to conpensate for possible differences
in growing season. The distribution in elevation of the lakes with yield
estimates had a break in the data at 1,000 m above nean sea level (Figure 1).
Correlations of yield with MEl, total phosphorus, chlorophyll "a', and secchi
were conpared for lakes at altitudes of s1,000 m and >1,000 mwith those from
t he whol e data set.

RESULTS

The data base includes a total of 74 |lakes and reservoirs and 64 data
fields (Appendix B). Very few observations are conplete for all 64 variabl es.

The 74 | akes that we sunarized varied in surface area from 14.2 to 38, 348
hectares (Appendix C. Mean depth ranged from5.2 to 164 m Forty-eight of the
|akes are in the state of Washington, 16 are in ldaho, 4 in Colorado, 2 each in
Wah and British Colunbia, and 1 each in Cregon and Montana. H evations ranged
from4 to 2,524 m nsl.

Mbst of the lakes in the data base are relatively unproductive (Fi gure 2).
Total phosphorus ranged from3 to 94 ug/l (n = 56). Total phosphorus levels in
50% of the |akes were bel ow 20 W/'- Twenty-nine percent of the |akes had total
phosphorus |evels <10 ug/l. Secchi depths ranged from1l.0 to 14.0 m(n = 68),
with 50% between 4 and 8 m Chlorophyll 'a values ranged from0.7 to 15.0 ug/|
(n =30), with 50% 1 ess than 2.5 ug/l.

Kokanee yield estinmates were available for 28 |akes and reservoirs (Table
1). Yield estimates ranged from 0.023 kg/hectare in Aturas Lake, |daho (Secchi
depth = 13.0 n) to 12.741 kg/hectare in Spirit Lake, |daho (secchi depth = 3.9
m. Fifty percent of the estimates are between 0.017 and 2 kg/hectare (Figure
1). Yield estimates were not available for any of the |akes with concentrations
of total phosphorus and chlorophyll 'a' above 50 ug/l and 6 ug/l, respectively.
Six of the 28 yield estinmates represent either exceptionally |ow years or partial
estinmates (ie. declines following the M. St. Helens eruption, partial seasons,
or partial |ake estimates) (Table 1).
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Figure 1. Frequency distribution of observations by elevation (m above mean
sea level) for 28 lakes where yield estimates were available.
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Table 1. calculations of kokanee yield estimates for 28 lakes and reservoirs in Idaho, washington,

Oregon, Montana, Utah, Colorado and British Columbia.

Mean Mean Lake

Tength weight Total surface

in catch 1in catch? Number weight area Yield
Body of water (mm) (@ harvested (ka) (ha) (ka/ha) Comments
Alturas 210 71.85 107 8 339 0,023 1986-87 mean
Anderson Ranch -—- 247.00 33,600 8,299 1,918 4,327 1985 only
Coeur d'Alene 215 77.74 521,517 40,544 12,743 3,182 1979-80 mean
pworshak 258 143.13 206,976 29,624 6,920 4,281 1988 only
Island Park 330 326.25 158 52 3,153 0,016 winter fishery only
Payette 288 206.84 1,276 264 2,160 0,122 1987-88
Pend Oreille 245 120.38 838,460 100,935 38,348 2,632 1958-62
Priest — 140.00 84,131 11,778 9,454 1,246 1968-70
Redfish 240 112.35 1,400 157 608 0,259 1968-87
Sspirit 245 128.10 59,480 7,619 598 12,741 1981 only
Stanley 194 55.11 150 8 74 0,112 1986
Banks 364 453.02 60,740 27,516 11,008 2,500 7 year mean
Billy Clapp 260 146.88 6,126 900 405 2,222 1978 only
Chelan 285 199.72 6,000 1,198 13,355 0,090 Represents decline
Deer 411 680.24 584 397 445 0,893 1938-40
Loon 387 556.15 584 325 457 0,711 1938-40
Merwin 300 237.13 4,693 1,113 1,619 0,687 1978-82
Sammamish -—- 442.00 359 159 1,982 0,080 Represents decline
Ya-le 305 250.62 10,919 2,737 1,538 1,779 Represents decline
Koocanusa 307 256.17 29,480 7,552 18,160 0,416 1987, BC only
Okanagan --- 174.00 156,000 27,144 35,112 0,773 1971, 1978-80
Flathead 312 270.40 495,910 130,095 51,039 2,627 1981-82
Flaming Gorge 623.00 30,294 18,873 17,000 1,110 1985-88
Porcupine 300.00 1,580 474 80 5,925 1979 only
Dillon 276 179.38 67,575 12,121 1,300 9,324 1975-79
Green Mountain 351 401.09 14,200 5,696 850 6,701 1975-79
Granby 317 285.18 58,000 16,541 2,938 5,630 1975-79
odell 230.00 64,000 14,720 1,454 10,124

aw = 0.00000127 (L3-347517)
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W found a strong positive relationship (r? = 0.72) between effort
(rod/ hours/hectare) and kokanee yield (kg/hectare) (Figure 3). The data al so
suggest rel ationships nmay exist between yield and |ake productivity (Table 2).
Regressi on anal ysis incorporating both effort and a productivity index as
i ndependent variables did not provide any significant inprovenent in single
vari abl e nodel s of yield.

Wen we divided the | akes sanpled by elevation (Figure 4), there was a
stronger rel ationship between yield and norphoedaphi c index (r = 0.76; P = 0.05)
and between yield and chlorophyll '"a (r = 0.77; P = 0.05) for |akes at
el evations --<1,000 m (Table 3). Lakes at elevations >1,000 m exhibited a stronger
relati onship between yield and total phosphorus (r = 0.93; P = 0.05) and between
yield and Secchi (r = 0.50; P = 0.10). Sanple sizes for the higher elevation
| akes, however, were low (n = 9 and 5, respectively). Masures of productivity
for two |akes with kokanee yield estimates at el evations >1,000 m were not
avai l able (Figure 1).

DI SCUSSI ON

Many enpirical nodels relating abiotic and biotic factors to total fish
yield or standing crop of fish have been devel oped. MEl is a useful tool for
predicting potential fish yield anmong | akes and reservoirs that have simlar
growi ng seasons (Ryder 1965, 1974; Jenkins 1967, 1982; Henderson et al. 1973).
Hanson and Leggett (1982) found total phosphorus and macro-bent hos bi omass/ mean
depth to be stronger predictors of total fish yield than norphoedaphic index.
Qylesby et al. (1987) predicted walleye yield using chlorophyll "a concentration
as the independent variable.

Lake productivity data that were the nost easily obtained for our data
set were MEl, total phosphorus, chlorophyll a, and nean summer Secchi depth.
Measures of nacro-benthos biomass are not readily available from nornmal | ake
i nventory records. Zoopl ankt on bi omass, which would be a nore |ogical choice
for use in kokanee | akes because of their close association to kokanee, also is
not readily available. Therefore, neither nacro-benthos or zoopl ankton bi onass
were considered in our analysis.

Mor phoedaphi ¢ | ndex

MEl was originally described as a quick and conveni ent nethod of estimating
potential fish yield fromlarge north-tenperate |akes at altitudes <600 m ( Ryder
et al. 1974). Since its first description, MEl has been used as a yield or
bi onass estimator for |lakes and reservoirs belonging to several different systens
throughout the world (Ryder et al. 1974; Jenkins 1967). The criteria that Ryder
et al. (1974) set up for the identification of |akes suitable for regression of
yield on MEl are: 1) simlar climatic conditions, 2) simlar ionic conposition
of dissolved material, 3) proportional flushing rates per unit of |ake vol une,
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lakes sampled.
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Table 2. Correlation coefficients for whole data set.

greater than 95% confidence.

Asterisk denotes r values at

. Total Chlorophyl1

vield secchi MEI P 'a' Effort
vield 1.000
Secchi Depth -0.355%* 1.000
MEI 0.178 -0.452%* 1.000
Total
Phosphorus 0.140 -0.640% 0.362 1.000
Chlorophyl1'a’ 0.455% -0.704% 0.699* 0.464%  1.000
Effort 0.853* -0.056 0.573% -0.040 0.526% 1.000
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Table 3. Correlation coefficients of four productivity indices with yield using a data set
stratified by elevation. Asterisk denotes r values at 95% confidence. Sample size
in parentheses.

Elevation ATl Elevation
s1000 m Observations >1000 m
MEI 0.760 0.178 0.367
(1D (16 €))
Total
Phosphorus 0.071 0.140 0.930
(13) (18) ©)]
Secchi Depth -0.314 -0.355 -0.496
(16) 25 €©))
Chlorophyl11'a’' 0.767 0.455 0.089
(10 4 @®
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4) inorganic turbidity on the same order of magnitude for all |akes, and 5)
noderate to intense fishing effort over several years.

Qur data suggest that MEl may be a useful estimator of kokanee yield in
| ower elevation (<1,000 m |akes and reservoirs (r = 0.76; P = 0.05).
Correlations of yield wth MEl for the entire data set, however, resulted in an
r value of only 0.18. This low r value may be caused by a violation of Ryder s
criteria for the use of MEl when it is applied to the entire range of our data
set. Geater consideration of climate or growi ng season, and ionic content of
the water may |l ead to nore accurate use of MEl as a predictor.

Total Phosphorus

Qur data show total phosphorus to be a poor predictor of fish yield in
the lower elevation |akes and for the entire data set. Total phosphorus,
however, may be useful in higher elevation lakes (r = 0.93; P = 0.01), although
our sanmple size is very snall (n = 5).

Because of their position in the watershed, higher elevation |akes nay
have | ower concentrations of suspended sedi nents and associ ated phosphorus. |f
so, nore of the phosphorus in these systens would be present in a biologically
available formrather than adsorbed to sedinment particles. The use of tota
phosphorus alone as a predictor of potential yield may be inappropriate in
situations where a large anount consists of phosphorus that is adsorbed to soi
particles (Qyl esby 1977). Ednundson and Koeni ngs (1986) found that dissolved
phosphorus |evels ranged froma | ow of 9% of the total phosphorus in highly
turbid systens (40 NTU) to 56%in lakes with low turbidity (NTU <10). The effect
of turbidity on the availability of phosphorus should be incorporated into any
nmodel using total phosphorus as an indicator of productivity.

Chl orophyl | 'a

Qgl esby et al. (1987) found regression of walleye and total fish yield on
mean grow ng season chlorophyll 'a concentration indicated strongly positive
correlations (r? = 0.81 and 0.73, respectively). Qur data show chlorophyll 'a
may al so be useful as a yield predictor for |ow elevation lakes (r = 0.77 for
| akes at el evations s1,000 m.

A though a strong relationship generally exists between total phosphorus
and nmean summer chlorophyll "a concentrations (Dillon and R gler 1974; Hoyer
and Jones 1983), this relationship nay be affected by a nunber of vari abl es.
H gh flushing rates nay renove phytopl ankton from the system before they reach
their maxi mum | evel (Qgl esby 1977; Hoyer and Jones 1983). High |evels of
i norgani ¢ suspended solids al so may cause significant decreases in chl orophyl
‘a’ concentrations (Hoyer and Jones 1983, Ednundson and Koenings). The
relationship we found between total phosphorus and chlorophyll a concentrations
in our data was sonewhat lower than that found in the literature (r? = 0.46),
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suggesting that flushing rates or inorganic suspended solids may be affecting
our data. Flushing rates ranged from 0.02 to 11 years in |akes where yield data
were avail able. Measurenents of turbidity were not included in our data set.

Because Chlorophyll 'a concentrations may reflect the difference between
bi ol ogi cal | y avail abl e phosphorus and the neasures of total phosphorus, it should
prove to be a better overall indicator of potential yield than total phosphorus.

Agai n, because of snall sanple size, we cannot draw any concl usions.

Mean Summer Secchi Depth

Mean sumrer Secchi depth was the variable npbst easily obtained (n = 25).
Secchi transparency showed significant inverse relationships with M, total
phosphorus and chlorophyll 'a', and a relationship with kokanee yield when
anal yzed using all observations (r = 0.36; P = 0.05). Kokanee growth is related
to lake productivity as expressed by Secchi transparency or chlorophyll "a' (Job
2 this report). Because Secchi transparency correlates well wth other
productivity indices and with kokanee growth, it may be a good choice as an
overall indicator. A nuch larger sanple size, however, nmay be needed to describe
the rel ationship to kokanee yield.

Ef fort

Effort had a strong correlation with kokanee yield and may explain sone
of the wvariability in our relationships of yield and productivity. Miltiple
regressions incorporating both productivity and effort, however, did not
prove to be useful. The observations may be too limted in range and nunber to
ef fectively incorporate both variabl es.

Sunmary and Concl usi ons

W have summarized a substantial amount of information on kokanee fisheries
in a form accessable to kokanee biologists. Mst observations, however, are
i nconpl ete. Conplete yield and productivity information are linmted to |akes
of low or internediate productivity. Al though the data suggest that several
rel ati onships may exist between yield and productivity, effort was the nost

important predictor. Oher factors may also be inportant. Environmental
limtations or the presence of predator or conpetitive species may also affect
yield. Gven this, the upper limts of our points nay best represent the

potential of a system For |akes with yields substantially below the potentials
suggested here, nmmnagers should exanine alternative explanations for poor
fishing. Lakes with fishing effort less than 80 rod hours/hectare nmay be
under expl oi t ed.
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The rel ationships we found between | ake productivity and fish yield show
pronmise for their use in devel oping a valuable tool for the managerment of kokanee
in Idaho. More useful enpirical nodels wll require observations over a w der
range of lake productivity. Mre observations may al so allow the incorporation
of several independent variables, such as flushing rates, turbidity, and |length
of grow ng season

RECOMMENDATIONS

1) hlorophyll "a', Secchi depth, MA, elevation, and fishing effort were
the best potential predictiors of kokanee yield. The use of phosphorous
concentrations may be confounded by variation in the biologically available
form Long-term nonitoring and inventory of kokanee fisheries shoul d include
at least one, and preferably all, of the first four paranaters.

2) Inventory of any new fisheries should incorporate estinmates of kokanee
yield, total effort, and the paraneters discussed in Reconmendati on 1 whenever
possi bl e. The observations summarized in this report are too few or inconplete
to incorporate several variables in a predictive nodel. Mre conplete
observations may provide better predictions of potential yield. Additional data
avail able on lakes in Mntana and British Col unbia shoul d be obtai ned to expand
t he data base.

3) The upper linmts of yields observed in our |akes should be considered
the upper limts of potential yield for |akes of conparable productivity. In
the absence of nore conplete infornation, the data summarized here can provide
a perspective for managers of kokanee fisheries.
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APPENDI X A.

Summary fornms used for data collection
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LARKE CHARACTERISTICS:

Elevation, (meters above sea level): Latitude:

Drainage Basin Area (sq.km): Maximum Depth (m):
Lake Surface Area at Full Pool (ha): - Mean Depth (m):

Shoreline Length (km): Volume:
Theoretical Flushing Rate (lake volume/mean annual outflow):
Mean Depth of Thermocline (top of thermocline) in August:
Total Phosphorus at Spring Overturn, Expressed as P (ug/l):
DS (mg/1): OR  Conductance (umhos/cm? at 25°C):
( orophyll "a" (ug/l):
(mean) (range) (sampling period for mean,

i.e., annual, May-Sept.)

Secchi Depth (m):
{mean) (range) (sampling period for mean,
i.e., annual, May-Sept.)

COMMENTS: (incl other observations that can help define productivity or trophic status,
i.e., 4 estimates, oxygen deficits, common algal bloome, winter kill)

MAJOR PERTURBATIONS TO THE SYSTEM:
Phvsical

Drawdowns (annual range in meters):

Month(s) largest reduction in lake surface elevation occurs:
( ENTS: (other major perturbations or problems: dams on tributaries, blocked spawning

habitat, entrainment of fish via water release points, or other important
changes and relative significance of the problem)
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Biological
Mysis (Y/N): Year Mysis Introduced:

{
Density Range (#/mf): Year Obviously Established:

COMMENTS: (other biological perturbations, macrophytes (milfoil), other invertebrates
(common name), cultural eutrophication, ...)

KCRANEE POPULATION:

Introduced or Native: Year 1st Introduced
Source lake if introduced (original native stock if known):
Predoni ¢ . figh:

Fish that spawn after the third summer are considered to be age 2+
If split evenly between two ages, i.e. 3 and 4, list as 3.5.
Range: Dominant:
Peak spawning time (mode of temporal distributiom):
Note method of estimate (scale back calculation, otolith, length frequency).
If length does not represent size-at-annulus formation, note the month of sample

and place a plus (+) after the age (i.e., during first summer/fall, age = 0+);
Range is for all fish in all years.

Method of Estimate: Month of Sample:
Length (mm)
Age . Mean Range . Mean of all yrs.

month(s)

I

II

I1I
v :
V+ & older!
Spawners :

OOMMENTS: (obvious density dependence, differences in growth between males and females)
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?mm :

Population number or density {(no/ha). For “Mean of 5 years"” give mean of
highest 5 consecutive years. If less than 5 consecutive yeare are available,

note the sample size.

Total Number: Range: Mean of 5 years:

Method of Estimate (trawl, acoustics...):

Total Adult Number (escapement plus harvest of mature fish):
Range: Mean of 5 years:

Method(s) of Estimates

Number stocked. For “Mean of 5 years" give mean of highest 5 consecutive
years. If less than 5 consecutive years of data are available, note the
sample size. For “Time of release” give month targeted for peak release.
For "Percent contribution” give the percent of the population from hatchery
production in years of maximum hatchery release.

Number stocked annually: Range: Mean of § yrs.:

Size at release (mm): Range: Mean:

Time of release (month):

Contribution of hatchery vs. wild (%):

COMMENTS: (special management, research, or fishery development programs -
include such things as long term monitoring, fertilizationm,
and experimental releases ...)
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FISH COMMUNITY

P edators:

FISHERY

Species (Common Name):

COMENTS: (estimates of escapement or density, relative importance
of predator, relative effect on kokanee...)

List all species (common name):

COMMENTS: (relative abundance, estimates of density, interaction with
kokanee. . .)

Total Angler Effort: (Rod hours/year) estimated hours for a full season. For "Mean of

5 years"” give mean of highest 5 consecutive years. If less than 5
consecutive years of data are available, note the sample size.

Range:
Mean of 5 Years:

COMMENTS: (Note if census does not represent all angler effort or full
season ~ if estimate is in days, provide an estimate of the

length of an angler day).
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(What percent of the total estimated effort is by anglers specifically
targeting kokanee?) For "Mean of 5 years' give highest 5 consecutive
years. If less than 5 consecutive years of data are available, note

sample size.

Range: Mean of 5 Years:

COMMENTS :

(preferably fish per rod hour; if by rod day, provide an estimate
of the length of a day)

Summer mean: Annual mean:

Primary Method:
(trawl, handlines, other)

COMMENTS :

Total number of fish in the catch of all fishermen for the whole lake.
For "Mean of 5 years" give highest 5 consecutive years. If less than 5
consecutive years of data are available, note sample size. For

“Mean size in catch” provide the mean weight of fish in catch during
the above period.

Range:
Mean of 5 Years:

Mean Size in Catch (g):

COMMENTS: (peak season, methods, causes of variability, .
long term declines...)
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Predator Harvegst: Total number of fish in the catch of all fishermen for the whole lake.
For "Mean of § yvears" give high=et & consecutive years. If less than &
consecutive years of data are available, note sample size. For
"Mean size in catch” provide the mean weight of fish in catch during
the above 5 years.

Range:

Mean of $ Years:

Mean Size in Catch (g):

COMMENTS: (peak season, methods; causes of variability, long term
declines ...)

REGULATIONS
Seasons:

Daily Bag Limits:

COMMENTS :

KEY REFERENCE(S) FOR THIS LAKE

Person: phone:

Publication(s) or Report(s):

I FRMATION SIMMARIZED BY:
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APPENDI X B.

Dat a base structure for Regional . dbf
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DATA STRUCTURE FOR DATASASE: RES| ONAL. DBF

FI ELD FI ELD FI ELD NUMBER OF
NAVE TYPE W DTH DEC  DESCRI PTI ON OF DATA OBSERVATI ONS
WATER CHARACTER 15 LAKE NAMVE 74
CODE CHARACTER 4 LAKE NAVE CODE FOR USE I N SYSTAT

STATE CHARACTER 2 STATE 74
ELEV CHARACTER 4 ELEVATI ON ( METERS) 73
LATI TUDE CHARACTER 6 LATI TUDE 64
DRAI NAGE CHARACTER 8 1 DRAI NAGE BASI N AREA (KMR) 65
SA CHARACTER 8 1 SURFACE AREA (HA) 74
SHORELI NE CHARACTER 5 1 SHORELI NE LENGTH <KM2> 65
MAXDEPTH CHARACTER 5 ' MAXI MUM DEPTH  ((1) 69
MEANDEPTH CHARACTER 5 1 MEAN DEPTH (M 72
VOLUMVE CHARACTER 8 VOLUVE (ACRE FEET) 66
FLUSHRATE CHARACTER 6 C FLUSH RATE (YK) 26
THERMDCLI M CHARACTER 2 TOP OF THERMOCLINE (M 42
MEI CHARACTER 3 MORPHOEDAPHI C | NDEX 10
TA CHARACTER 3 TOTAL PHOSPHORUS (UGXL) 56
CONDUCT CHARACTER 3 CONDUCTI VI TY 56
CHLOR A CHARACTER 4 1 CHLOROPHYLL A~ (UGQ L) 30
SECCHI CHARACTER 4 1 SECCH DEPTH (M 66
D_DDN\N CHARACTER 5 2 ANNUAL NMEAN DRAW DOMN ( K) 26
DONN_MDS CHARACTER 10 MONTH(S) OF DRAWOONN 16
TR 8_DAVS CHARACTER 1 DAMS ON TRIBUTARI ES (Y/N) 19
MYSl S CHARACTER 1 MYSI S PRESENT (Y/N) 60
MYSI S_H CHARACTER 4 MYSI S ABUNDANCE (RANGE - Hi GH)

MYSI S1L CHARACTER 4 MYSI S ABUNDANCE (RANGE - LOW

MYSI S_EST CHARACTER 4 YEAR MYSI S ESTABLI SHED 6
KOK_SOUKCE ~ CHARACTER 15 SOURCE OF KOKAN [ 48
SPANH_MOS CHARACTER 20 PEAK SPAWNI NG MONTHS 0
AGE_MATURE  CHARACTER 3 1 AGE AT NATURI TY 15
LN 0 CHARACTER 3 MEAN LENGTH AT AGE 0+ (MM 7
LN | CHARACTER 3 MEAN LENGTH AT AGE |+ (MV) 14
LN I CHARACTER 3 MEAN LENGTH AT AGE | I+ (MV) 25
LN I T CHARACTER 3 MEAN LENGTH AT AGE |11+ (MW 22
LN 1V CHARACTER 3 MEAN LENGTH AT AGE |V+ (MW 12
m_\”H CHARACTER 9 MONTH OF SAMPLE FOR LENGTH AT AGE 17
LN_SPANN CHARACTER 3 MEAN LENGTH OF SPAWNERS (MV) 7
[ SCAP H CHARACTER 6 ESCAPEMENT TO SPAWN (RANG - HI GH) 1
ESCAP LU CHARACTER 6 ESCAPEMENT TO SPAWN (RANGE - LOW 1
ESCAP MEAN CHARACTER 6 ESCAPEMENT TO SPAWN ( MEAN) 1
ESCAP MK CHARACTER 10 NETHOD FOR ESTI MATI NG ESCAPEVENT

TR B ;PAVW CHARACTER - 2 PERCENT TRI BUTARY SPAWNERS 0
ST(I]_<[ bH CHARACTER 7 NUVBER STOCKED PER YEAR (RANGE - HI GH) 20
STDCKED LU CHARACTER 7 NUMBER STOCKED PER YEAR ( RANGE Low 16
STOCKED_X CHARACTER 7 NUVBER STOCKED PER YEAR ( MEAN) 20
STOCKJ| NE CHARACTER 10 MONTH STOCKED 27
HATCHERY C CHARACTER 2 PERCENT HATCHERY CONTRI BUTI ON

NO_XOKANEE CHARACTER 3 MEAN KOKANE[ ABUNDANCE (NO' HA) L~
NO KK CHARACTER 4 KOKANEE ABUNDANCE (NO' HA) (RANGE - HI GH 6
O K | O CHARACTER 3 KOKANE[ &BUNDANCE (HO' HA)  (RANGE - LOW
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PREDATORS
SPECI ES
EFFORT
EFFOKT_HI
EFFOFT_LO
[ FFORT_KOK
Y{ ELD_XOK
HARVEST_K
HARVEST_H
HARVEST_LO
KOK_S~ZE
P_HARYEST
P_sl ZE

Yl FI D PRFD

[=l=a

REF_NO

MEMO
MVEMO
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTFR
MVEMO
CHARACTER

10
10

[«2]

D A OO WO OO0 ON

P
N O

PREDATOR SPECI ES

SPECI ES COVPCSI TI ON

TOTAL FI SH NG EFFORT (ROD HOURS)

TOTAL FI SHI NG EFFORT (RANGE HIGH) °
TOTAL FI SH NG EFFORT (RANGE LOW
PERCENT OF EFFORT TARGETI NG XOKANEE
KOKANEE YI ELD (K@ HA)

MEAN NUMBER OF KOKANEE HARVESTED
NUVBER OF KOKANEE HARVESTED (RANGE - H
NUVBER OF KOKANEE HARVESTED (RANGE LO
MEAN SI ZE OF KOKANEE | N THE CATCH (G)
MEAN NUMBER OF PREDATOR SPECI ES HARVEST
MEAN Sl ZE OF PREDATOR | N THE CATCH ©

PREDATOR Y!I ELD ( KG HA)
REGULATI ONS

CROSS REFERENCE TO | NFORVATI ON SOURCE
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APPENDI X C

Summary Report of Lake Characteristics
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Page No. 1

01,049,880

REGIOHAL DATA BASE

LLAKE CHARACTERISTICS
ROOY OF DRAIN SURFRCE SHORE HFAX HEAH FLUSH THERMO- TOTAL CHLOR SECCHI  DRAM
WATER ST LAT ELEVY RRER ARER LENGTH DEPTH DEPTH UVOLUHE RATE CLIHE FHOS. COND R/ DEPTH DO HYS  HEI

cHY CKH2) THA2 4.4, b CHY CHY CACFT) YR CH) UG CUGALY  CHD CH> YN

L3 -1 0
KOOUANUISH BC 490000 741 23491.0 18160.0 360.0 113.0 38.49 4711013 0.670 20 18 230 2.1 3.9 e ——
NKANAGAN BC 435200 341 &040.0 35112.0 2v0.0 2492.0 6.0 - —— 15 1n 2A0 1.3 g9 1.00 ¥ 3.7
»* (O
DILLON RES. cn ——m—— 2750 —— 1300.0 —-—— E0.0 23.0 24e2el —————— —-— - o e e r——— .00 ——
GRAMBY coO e 25214 1023.0 2738.0 k4.4 61.0 22 .6 i el L1 14 e - S.0 28.0 Y ——
GREEM HOUMTALH [ 2923 ——— 1%50.0 ot ——— w2.0 199RB0 = e —— ——— e e 1800 —
SHAROHW HOUNTAIN €O - 2551 1023.0 749.0 ——— —— 3.0 ——— ——— G 23 ——— ————— 4.3 ————— ——
=*x 10
ALTURAS ID 435500 2140 B5.0 239.0 a.0 67.0 38.0 TeSeT -——— 7 9 49 it 13.0 ——— 1.3
ANDERSON RANCH I0 432330 1260 2536.0 1318.0 r.0 &e7.0 29.8 493000 0.657 & 14 B0 4.2 .4 19.03 M 2.0
COER [D*ALENE ID 474000 £49 9576.0 12743.0 202.0 £1.0 24.0 2473183 0.550 22 45 80 4.1 S.0 2.0 N 3.3
DEADHOOD ID 4491930 1814 290.0 1295.0 17.0 30.0 15.0 160600 0.940 7 3n ar 4.9 1.3 e 2.5
DUORSHAK IO 483000 4813 6315.0 6320.0 282.0 192.0 B2.0 3463000 n.vag 5 21 30 4.4 4.k 47.00 0.5
TSLAND PARK ID 442400 1920 -——— 3153.0 Q0.0 2.0 5.0 127264 0.220 & o 150 .7 4.5 e 30.
LUCEY FPERK IO 433200 933 RS47.0 1153.0 66.0 £4.0 24.4 2220611 g.100 4 - T 2.5 5.0 -t 2.9
HACKAY IO 435700 1847 1892.0 542.0 12.0 e 10.0 43936 0,490 9 3 219 1.3 4.5 R 21
PALISADES I 431700 1713 134v8.0 6515.0 107.0 a2.0 26.5 1400000 n.a290 12 39 20 1.5 a.5 ~--- M 8.3
PAYETTE IO 445730 1524 3ar3.n 2160.0 38.0 as5.0 as.0 £12840 2.320 S 6 20 1.0 G.10 ———— N 0.6
PEND OREILLE I0 480730 E24 59265.0 3I8348.0 310.0 3%1.0  184.0 50987714 2.740 1% 11 R0 2.0 6.5 4.00 ¥ 1.1
PRIEST LAKE ID 483100 397 1480.0 9454.0 109.0 112.0 38.0 2912224 3.120 4 4 b 1.5 [ 1.00 ¥ 1.3
REDFISH LRAKE I0 440700 199% 103.0 Bp0B.0 15.0 g8a.0 46 .01 2envin ~—- R 6 - e 140 Rt -
SPIRIT LRAKE ID 475630 686 125.0 598.0 21.0 2¢.0 10.9 52853 R - | i3 24N 5.3 3.9 e 22
STRANLEY I0 431400 1984 38.0 r4.0 4.0 ac.0 15.0 3160 ——— P - ——— it 11,11 o ———
UPFEER FPRIEST 10 484R00 44 1481.0 S567.0 14.0 3In.0 12.0 5515% - b 1on 2.1 k.0 et 8.3
%% NT
FLATHEARD LAKE HT —————— ag 18400.0 S1139.0 200.0 113.0 2.5 13449R210 2.200 10 — —— et £g8.0 .o ¥ ——
%% QOR
DOEILL (1] 1459 —— 1454.0 ——— 86.0 q41.0 o — - Iz 2.4 .1 Rt | 0.7
** UT
FLAHING GORGE ur - ——— -—=— 17000.0 —— ———— - —— e —— ——— ——— e v ———
PORIZUPINE ur - 1615 q1.0 80.0 e 2.4 20.1 ———— - ——— -—— e e | ———— Y ——
%¥ R
ALDER LAKE HA 464809 a6R 0.7 1254.6 445.1 £8.4 22.49 230000 e 29 40 - 3.0 e | 1.7
RHERICAN L ARKE HA 470630 Figes 65.8 445.2 19.3 7.4 16.2 60000 ——— P 31 a5 ——— 5.1 —--- H 5.9
AMGILE LAKE WA 472530 111 2.1 0.5 3.5 1.8 7.E 2600 ——— 46 Ve —— 4.3 e W 9.4
BAK.ER LRAKE MR 483158 z21 557.0 2117.4 —— - - 220600 e o e s e 15.20 M ———
BANKKS LRAKE HA 473703 473 ----11008.0 131.5 S2.0 13.5 1300000 0.430 24 44 112 2.6 E L 1.60 M 8.3
BILLY CLRPP L. WA 472R54 407 —— 405.0 22.5- 3.5 19.8 65000 0.nz2g - 33 165 e 2.5 R || 8.3
BONRPARTE LAKE HA  4R473% 1084 18.1 h6.8 9.1 33.6 0.1 s500 s 50 2es ——— AT - N 2e
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BOD'Y OF

HATER

BUHFING LAKE
CASTADE LLAKE
CAVRNAH

CHATH LAKE
CHAPHAN LAKE
CHELAK LAKE

CLE ELUM LAKE
CLERR LAKE
COOPER LRAKE
DAVIS LAKE

DEEF LAKE-GRANT
DEEF LAKE-KINi
DEEF LAKE
EASTON LAKE
KACHEES LAKE
KEECHELUS LAKE
LOOH LAKE

1.OST LAKE
HERIDIAN LRKE
HERHUIHN LAKE
HOUNTAIN LRKE
PADDEN LAKE
PALHER LAKE
PIERRE LAKE
PIFE-LUCERHE
RIHROCK LAKE
ROESIGER SO.ARM
POESI GER-NG.ARYH
SAHHARISH LAKE
SAHYER LAKE
SHAHNON LAKE
STAR LAKE
STEILACOON LAKE
STEVENS LAKE
SULLIVAN LAKE
TOAD LLAKE

TROUT LAKE
HASHINGTON LAKE
HEMATCHEE LAKE
HILDERNESS LAKE
YALE LAKE

LAY
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483850
421950
480305
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SPECIES COMPOSITION: SPECIES CODE LIST

ACAL CHISELMOUTH ONNE2 SALMON, SOCKEYE
ACTR STURGEON, WHITE ONTS5 CHINOOK
ALSA SHAD, AMERICAN 0SMO SMELT, RAINBOW
CAAR SUCKER, UTAH PEFL PERCH, YELLOW
CAAU2 GOLDFISH PETR2 ROLLER, SAND
CACO SUCKER, LONSNOSE PIPR MINNOW, FATHEAD
CADI SUCKER, BRIDGELIP PORN CRAPPIE, WHITE
CAMA2 SUCKER, LARSESCALE PDMO CRAPPIE--UNKNOWN SP.
CAPL SUCKER, MOUNTAIN PONI2 CRAPPIE, BLACK
COBA SCULPIN, MOTTLED PORE GUPPY
cocL SCULPIN, PIUTE PRAB WHITEFISH, BEAR LAKE
CDCo4 WHITEFISH, LAKE PRCO WHITEFISH, PYGMY
COEX SCULPIN, SHORTHEAD PRGE CISCO, BONNEVILLE
COGR SCULPIN, SLIMY PROS WHITEFISH--UNKNOWN SP.
COLE SCULPIN, WOOD RIVER PRSP WHITEFISH, BONNEVILLE
CDPL CHUB, LAKE PRWI WHITEFISH, MOUNTAIN
CORH SCULPIN, TORRENT PTOR SOUAWFISH, NORTHERN
CYCA CARP PYOL CATFISH, FLATHEAD
ESLU PIKE, NORTHERN RHCA DACE, LONGNOSE
GAAF MOSDUITOFISH RHFA DACE, LEOPARD
GIAT CHUB, UTAH RHIN DACE--UNKNOWN SP.
GIBI CHUB, TUI RHOS DACE, SPECKLED
GICO CHUB, LEATHERSIDE RIBA SHINER, REDSIDE
ICME BULLHEAD, BLACK SAAG TROUT, GOLDEN
1CNE BULLHEAD, BROWN SARL CHAR, ARCTIC
ICPU CATFISH, CHANNEL SACL TROUT, CUTTHROAT
ICTA BULLHEAD--UNKNOWN SP. SACL2 CUTTHROAT, SNAKE RIVER FINE-SPOTTED
LAIR LAMPREY, PACIFIC SACL3 TROUT, BEAR LAKE CUTTHROAT
LECY SUNFISH, GREEN SACLB TROUT, YELLOWSTONE CUTTHROAT
LEGI PUMPKINSEED SACLL TROUT, WESTSLOPE CUTTHROAT
LEGU WARMOUTH SACLU TROUT, BONNEVILLE CUTTHROAT
LENA BLUEGILL SACO TROUT, BULL
LOLO BURBOT SAFO TROUT, BROOK
MIAN LOACH, JAPANESE WEATHER SAGA TROUT, RAINBOW
MIDO BASS, SMALLMOUTH SAGA2 STEELHEAD
MISA BASS, LARGEMOUTH SAGA3 TROUT, GERARD RAINBOW
MYCA2 PEAMOUTH SANA TROUT, LAKE
NOGY MADTOM, TADPOLE SASA2 SALMON, ATLANTIC
ONKE SALMON, CHUM SASP TROUT, REDBAND
ONKI SALMON, COHO SRTR TROUT, BROWN
ONNE KOKANEE STVI WALLEYE

THAR GRAYLING, AMC

TITI TENCH
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